MEMS技术及其应用主要内容MEMS技术简介MEMS技术应用微机械制造技术MEMS器件MEMS简介WhatisMEMSTechnology?MEMS(microelectromechanicalsystems)aredevicesthatinvolveintegratedmicro-devicesorsystems,usuallycomprisedofelectricalandmechanicalcomponents,producedusingmicroelectronics-compatiblebatch-processingtechniques.Thesesystemsmergecomputationwithsensingandactuationtoperceivethephysicalworldataminiaturizedlevel.早在二十世纪六十年代,在硅集成电路制造技术发明不久,研究人员就想利用这些制造技术和利用硅很好的机械特性,制造微型机械部件,如微传感器、微执行器等。如果把微电子器件同微机械部件做在同一块硅片上,就是微机电系统——MEMS:MicroelectromechanicalSystem。由于MEMS是微电子同微机械的结合,如果把微电子电路比作人的大脑,微机械比作人的五官(传感器)和手脚(执行器),两者的紧密结合,就是一个功能齐全而强大的微系统。MEMS定义机械部分传感执行控制部分电子学MEMS微电子学从广义上讲,MEMS是指集微型传感器、微型执行器以及信号处理和控制电路,甚至接口电路、通信和电源于一体的微型机电系统。图是一典型的MEMS示意图。由传感器、信息处理单元。执行器和通讯/接口单元等组成。其输入是物理信号,通过传感器转换为电信号,经过信号处理(模拟的和/或数字的)后,由执行器与外界作用。每一个微系统可以采用数字或模拟信号(电、光、磁等物理量)与其它微系统进行通信1959年就有科学家提出微型机械的设想,但直到1962年才出现属于微机械范畴的产品—硅微型压力传感器。其后尺寸为50~500微米的齿轮、齿轮泵、气动蜗轮及联接件等微型机构相继问世。而1987年由华裔留美学生冯龙生等人研制出转子直径为60微米和100微米的硅微型静电电机,显示出利用硅微加工工艺制作微小可动结构并与集成电路兼容制造微小系统的潜力,在国际上引起轰动,科幻小说中描述把自己变成小昆虫钻到别人的居室或心脏中去的场景将要成为现实展现在人们面前。同时,也标志着微电子机械系统(MEMS)的诞生。微电子机械系统是以微电子、微机械及材料科学为基础,研究、设计和制造具有特定功能的微型装置(包括微结构器件、微传感器、微执行器和微系统等方面)的一门科学。世界上第一个微静电马达各国对MEMS的研究MEMS自20世纪80年代中期发展至今一直受到世界各个国家的广泛重视,许多有影响的大专院校和研究机构纷纷投巨资建立实验室,投入到MEMS的研究开发中。在美国政府巨额经费的资助下,包括麻省理工大学、加州大学伯克利分校、斯坦福大学、IBM、AT&T等三十余个大学、国家实验室和民间实验机构都投入到这个项目的研究中,取得了令人瞩目的研究成果。至今美国的科学家不仅已经制作出各种整体尺寸几百微米量级的微机械部件,能够将它们应用到各类传感器的制作中,而且有相当种类的MEMS器件实现了产业化。1991年,日本成立了国家MEMS开发中心,并在10年内投入了250亿日元开展“微型机械技术”研究开发。由于高强度的资金支持,日本在一些MEMS研究方面也达到了世界领先地位。此外,日本发展了微细电火花EDM、超声波加工、激光纳米加工等的精密加工技术。德国的卡尔斯鲁研究中心在1987年提出了LIGA工艺而闻名于世,该技术采用X射线曝光和精密电镀相结合,将半导体工艺技术的准三维加工推向真正的三维加工,加工深度可达几百微米,并且具有更高的尺寸精度,现在这种工艺已被许多国家的研究人员所采用。此外,如荷兰、英国、俄罗斯、新加坡、加拿大、以色列、韩国、台湾等国家和地区也取得了相当不错的研究成果。中国美国日本德国其他我国对MEMS的研究简介经费投入研究机构研究方向研究特点中国MEMS研究的覆盖面是比较宽的,增长速度是比较快的,然而,中国的MEMS研究多集中在高校和非产业化的研究所,研制的器件和系统大多数没有达到产前样机的水平,中国MEMS发展中的实用化和产业化还存在很严重的缺陷。MEMS研究在我国已形成了如下几个方向:微型惯性器件和惯性测量组合;机械量微型传感器和致动器;微流量器件和系统;生物传感器、生物芯片和微操作系统;微型机器人;硅和非硅制造工艺。目前不同层次的内地研究单位有60余个,如:清华大学、北京大学、上海微系统与信息技术所、北京半导体所、上海交大、东南大学、石家庄十三所、浙江大学、厦门大学、哈尔滨工业大学、西安交大、大连理工大学、华中科技大学、长春光机所、中国科技大学、天津大学、南开大学和吉林大学等。我国在MEMS方面的研究始于1989年,在国家“八五”、“九五”计划期间,得到了国家自然科学基金委、国家科技部、教育司、中国科学院和总装备部的积极支持,经费总投入约为1.5亿人民币。“十五”期间,MEMS被正式列入863计划中的重大专项,加上教育部的教育振兴计划、中国科学院的知识创新体系、基金委和科技部新的立项以及地方和企业的投入,总经费可达3亿元人民币以上。发达国家的MEMS发展过程表明,实现MEMS的实用化和产业化才能够给中国MEMS发展带来希望,从我国集成电路(IC)的发展历程可以更好地理解MEMS产业化的重要意义。MEMS的发展过程20世纪60年代:采用将传感器和电子线路集成在一个芯片上的设计思想来制作集成传感器。20世纪60年代后期:硅刻蚀技术用于制作能将压力转换为电信号的应变薄膜结构。20世纪70年代:人们使用硅各向异性选择性腐蚀制作薄膜,掺杂以及基于电化学的腐蚀停刻技术也出现了,随之而来的是“体硅加工”技术。MEMS的发展过程20世纪80年代:“表面微加工”技术在加速度计、压力传感器和其他微电子机械结构制作中得到了应用。20世纪80年代后期:MEMS在世界范围内受到了广泛重视,在美国、欧洲和亚洲,投入的研究资金和研究人员都以令人惊讶的速度在大幅增长。MEMS正在处于蓬勃发展的关键时期,不断地有新型器件和新型技术给予报道,人们见证了基于MEMS技术的喷墨打印头、压力传感器、流量计、加速度计、陀螺仪、非冷却红外成像仪和光学投影仪等设备的不断开发和产业化的进程。(如同IC)1982年,K.Petersen的综述性论文“Siliconasamechanicalmaterials”,概括了当时MEMS最高水平的微加工技术和微机械器件,被看作是MEMS研究进入系统化阶段的标志,开创了MEMS发展的纪元。1939年P-N结半导体(W.Schottky)1948年晶体管(J.Bardeen,W.H.Brattain,W.Shockley)1954年半导体压阻效应(C.S.Smith)1958年集成电路(IC)(J.S.Kilby)1959年“Thereisplentyofroomatthebottom”(R.Feynman)1962年硅集成压力驱动器(O.N.Tufte,P.W.Chapman,D.Long)1965年表面微机械加速度计(H.C.Nathanson,R.A.Wichstrom)1967年硅各向异性深度刻蚀(H.A.Waggener)1973年微型离子敏场效应管(TohokuUniversity)1977年电容式硅压力传感器(Stanford)MEMS的发展过程的重要历史事件1979年集成化气体色谱仪(C.S.Terry,J.H.Jerman,J.B.Angell)1981年水晶微机械(YokogawaElectric)1982年“Siliconasamechanicalmaterial”(K.Petersen)1983年集成化压力传感器(Honeywell)1985年LIGA工艺(W.Ehrfeldetal.)1986年硅键合技术(M.Shimbo)1987年微型齿轮(UCBerkeley)1988年压力传感器的批量生产(NovaSensor)1988年微静电电机(UCBerkeley)MEMS的发展过程的重要历史事件1992年体硅加工工艺(SCREAMprocess,Cornell)1993年数字微镜显示器件(TexasInstruments)1994年商业化表面微机械加速度计(AnalogDevices)1999年光网络开关阵列(Lucent)MEMS的发展过程的重要历史事件WhatisthepeculiarityofMEMStechnology?MEMS是受到集成电路工艺的启发而发展起来的,它不仅具有集成电路系统的许多优点,同时集约了多种学科发展的尖端成果。1、微型化特点2、多样化特点3、稳定性特点4、集成化特点5、批量化特点6、广义化特点MEMS的应用ApplicationFieldsofMEMS由于MEMS器件和系统具有体积小、重量轻、功耗小、成本低、可靠性高、性能优异、功能强大、可以批量生产等传统传感器无法比拟的优点,因此在航空、航天、汽车、生物医学、环境监测、军事以及几乎人们接触到的所有领域中都有着十分广阔的应用前景。MEMS的应用领域1、MEMS在空间科学上的应用2、MEMS在军事国防上的应用3、MEMS在汽车工业上的应用4、MEMS在医疗和生物技术上的应用5、MEMS在环境科学上的应用6、MEMS在信息技术领域中的应用MEMS在导航、飞行器设计和微型卫星等方面有着重要应用。如:基于航天领域里的小卫星、微卫星、纳米卫星和皮米卫星的概念,提出了全硅卫星的设计方案,整个卫星的重量缩小到以千克计算,进而大幅度降低成本,使较密集的分布式卫星系统成为现实。用MEMS技术制造的微型飞行器、战场侦察传感器、智能军用机器人和其他MEMS器件,在军事上的无人技术领域发挥着重要作用。美国采用MEMS技术已制成尺寸只有10cm×10cm的微型侦察机。汽车发动机控制模块是最早使用MEMS技术的汽车装备,在汽车领域应用最多的是微加速度计和微压力传感器,并且以每年20%的比例在迅速增长。此外,角速度计也是应用于汽车行业的重要MEMS传感器,它可用于车轮的侧滑控制。采用体微加工技术制作的各种微泵、微阀、微镊子、微沟槽和微流量计等器件适合于操作生物细胞和生物大分子。由于MEMS器件的体积小,能够进入很小的器官和组织,同时又能进行细微精细的操作,因此可以大大提高介入治疗的精度,降低医疗风险。利用MEMS技术制造的微型仪器在环境检测、分析和处理方面大有作为,它们主要是由化学传感器、生物传感器和数据处理系统组成的微型测量和分析设备,其优势在于体积小、价格低、功耗小和易于携带。MEMS技术的发展对信息技术产生了深远的影响。近年来,MEMS又逐渐向光通讯领域渗透,形成了由微光学、微电子学、微机械学和材料科学相结合的全新研究领域,即微光电子机械系统(MOEMS)。MEMS传感器及其组成的微型惯性测量组合在汽车自动驾驶、汽车防撞气囊、汽车防抱死系统(ABS)、减震系统、防盗系统等。GPS定位系统.*在汽车里作为加速表来控制碰撞时安全气囊防护系统的施用*在汽车里作为陀螺来测定汽车倾斜,控制动态稳定控制系统*在轮胎里作为压力传感器,在汽车上的应用MEMS已在空间超微型卫星上得到应用,该卫星外形尺寸为2.54cm×7.62cm×10.6cm,重量仅为250g。2000年1月,发射的两颗试验小卫星是证明空基防御能力增强的一个范例。对小卫星试验来说幸运的是,因其飞行寿命短,所以,暴露在宇宙辐射之下并不是关键问题。小卫星上基于硅的RF开关在太空应用中表现出优异的性能,这得益于它的超微小尺寸。作为一个在海上应用的实例,MEMS引信/保险和引爆半导体,微电子,集成电路,IC,工艺,设计,器件,封装,测试,F/SA装置已成功地用于潜艇鱼雷对抗