高一第一学期数学必修2第二单元卷2

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第二章测试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每题5分,共60分)1.下列不是直线与平面的位置关系的是()A.异面B.平行C.相交D.在平面内答案A2.下列说法中正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点答案C解析不共线的三点确定一个平面,所以A错误;四边形的四个顶点不一定共面,所以B错误;假设两个平面α和平面β有不同在一条直线上的三个交点,那么这两个平面重合,所以D错误;两条平行直线确定一个平面,梯形的一组对边平行,则梯形一定是平面图形,所以C正确.3.空间有四个点如果其中任意三个点都不在同一直线上,那么经过其中三个点的平面()A.可能有3个,也可能有2个B.可能有4个,也可能有3个C.可能有3个,也可能有1个D.可能有4个,也可能有1个答案D解析4个点可能在同一平面内,也可能不共面,任意两点之间连线组成四面体,所以平面个数为1个或4个.4.对于直线m,n和平面α,β能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β答案C5.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m答案B解析根据定理:两条平行线中的一条垂直于一个平面,另一条也垂直于这个平面知B正确.6.已知a,b是不同的直线,α,β是不同的平面,在下列条件下,不能判定a⊥b的是()A.α⊥β,a⊥α,b⊥βB.α∥β,a⊥α,b⊂βC.α⊥β,a∥α,b∥βD.α⊥β,a⊥α,b∥α答案C7.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°答案C解析延长CA至点M,使AM=CA,则A1M∥C1A,∠MA1B或其补角为异面直线BA1与AC1所成的角,连接BM,易知△BMA1为等边三角形,因此,异面直线BA1与AC1所成的角为60°,选C.8.已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于()A.4πB.3πC.2πD.π答案A解析如图,以SA,AB,BC为棱长构造长方体,得体对角线长为12+12+(2)2=2R,所以R=1,S=4πR2=4π.9.正方体ABCD-A1B1C1D1,二面角C1-AB-C的平面角等于()A.30°B.45°C.60°D.90°答案B10.将正方形ABCD沿BD折成直二面角,M为CD的中点,则∠AMD的大小是()A.45°B.30°C.60°D.90°答案D解析设正方形边长为a.在△AMD中,AD=a,AM=32a,DM=a2,∴AD2=DM2+AM2.∴∠AMD=90°.11.在正方体ABCD-A1B1C1D1中,E为A1C1中点,则直线CE垂直于()A.ACB.BDC.A1D1D.A1A答案B解析因为ABCD-A1B1C1D1是正方体,所以可证BD⊥平面ACC1A1,又CE⊂平面ACC1A1,则CE⊥BD.12.如图,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起,使面ABD⊥面BCD,连接AC,则在四面体A-BCD的四个面中,互相垂直的平面有()A.1对B.2对C.3对D.4对答案C解析由AB⊥BD,面ABD⊥面BCD,可知AB⊥面BCD,从而有面ABC⊥面BCD;又CD⊥BD,面ABD⊥面BCD,故CD⊥面ABD,从而可得面ABD⊥面ACD.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知二面角α-l-β的大小为60°,若直线a⊥α,直线b⊥β,则异面直线a,b所成的角是________.答案60°14.已知△ABC和直线l,若l⊥AB,l⊥BC,则l和AC的关系是________.答案垂直解析∵l⊥AB,l⊥BC,AB∩BC=B,∴l⊥平面ABC,AC⊂平面ABC,∴l⊥AC.15.如图所示,四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥面MNP的图形的序号是________(写出所有符合要求的图形序号).答案①③16.对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,BD⊥AC,则BC⊥AD.其中真命题的序号是________(写出所有真命题序号).答案①④解析①中取BC中点E,连接AE,DE.∵AB=AC,BD=CD,∴AE⊥BC,DE⊥BC.∵AE∩DE=E,∴BC⊥平面ADE,∴BC⊥AD.④中过A向平面BCD内作垂线,垂足为O,连接BO,CO,DO,可证O为△BCD的垂心.∴BC⊥DO.又BC⊥AO,∴BC⊥平面ADO,∴BC⊥AD.三、解答题(本大题共6小题,共70分)17.(10分)如图,已知正方体ABCD-A1B1C1D1中,M是AA1的中点,N是BB1的中点.求证:平面MDB1∥平面ANC.分析转化为证明平面MDB1内的两条相交直线MB1和MD平行于平面ANC.证明如图,连接MN.∵M,N分别是所在棱的中点,∴四边形AMB1N和四边形MNCD是平行四边形.∴MB1∥AN,CN∥MD.又∵MB1⊂平面MDB1,MD⊂平面MDB1,MB1∩MD=M,∴MB1∥平面ANC,MD∥平面ANC.∴平面MDB1∥平面ANC.18.(12分)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC.求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.解析(1)因为EF∥DB,所以EF与DB确定平面BDEF.连接DE.因为AE=EC,D是AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF,因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.19.(12分)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的正切值.解析过E作EF⊥BC,交BC于F,连接DF.∵EF⊥平面ABCD,∴∠EDF是直线DE与平面ABCD所成的角.由题意,得EF=12CC1=1.∵CF=12CB=1,∴DF=5.∵EF⊥DF,∴tan∠EDF=EFDF=55.20.(12分)如图,直三棱柱ABC—A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′—MNC的体积.解析(1)方法一:连接AB′,AC′,因为∠BAC=90°,AB=AC,所以三棱柱ABC—A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,因此MN∥平面A′ACC′.方法二:取A′B′的中点P,连接MP,NP,AB′.因为M,N分别为AB′与B′C′的中点,所以MP∥AA′,PN∥A′C′.所以MP∥平面A′ACC′,PN∥平面A′ACC′.又MP∩NP=P,因此平面MPN∥平面A′ACC′.又因MN⊂平面MPN,因此MN∥平面A′ACC′.(2)方法一:连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.又A′N=12B′C′=1,故VA′-MNC=VN-A′MC=12VN-A′BC=12VA′-NBC=16.方法二:VA′-MNC=VA′-NBC-VM-NBC=12VA′-NBC=16.21.(12分)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=3.(1)证明:平面PBE⊥平面PAB;(2)求二面角A—BE—P的大小.解析(1)如右图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.∵CD∥AB,∴BE⊥AB.∵PA⊥平面ABCD,∴PA⊥BE.∵PA∩AB=A,∴BE⊥平面PAB.又∵BE⊂平面PBE,∴平面PBE⊥平面PAB.(2)∵BE⊥平面PAB,∴BE⊥PB.∴∠ABP是二面角A—BE—P的平面角.在Rt△PAB中,AB=1,PA=3,tan∠ABP=3,∴∠ABP=60°.∴二面角A—BE—P的大小是60°.22.(12分)一个多面体的直观图及三视图如图所示(其中M、N分别是AF、BC的中点).(1)求证:MN∥平面CDEF;(2)求多面体A-CDEF的体积.解析由三视图知该多面体是底面为直角三角形的直三棱柱ADE-BCF,且AB=BC=BF=2,DE=CF=22,∠CBF=90°.(1)取BF的中点G,连接MG、NG,由M、N分别为AF、BC中点,可得NG∥CF,MG∥EF,∴面MNG∥面CDEF,∴MN∥面CDEF.(2)取DE中点为H,连接AH,∵AD=AE,∴AH⊥DE.在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,面ADE∩面CDEF=DE,∴AH⊥平面CDEF.∴多面体A-CDEF是以AH为高,以矩形CDEF为底面的棱锥.在△ADE中,AH=2,S矩形CDEF=DE·EF=42,∴棱锥A-CDEF的体积V=13S矩·AH=83.1.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点.(1)证明:EF∥平面PAD;(2)求三棱锥E-ABC的体积V.解析(1)在△PBC中,E,F分别是PB,PC的中点,∴EF∥BC.又BC∥AD,∴EF∥AD.又∵AD⊂平面PAD,EF⊄平面PAD,∴EF∥平面PAD.(2)连接AE,AC,EC,过E作EG∥PA交AB于点G,则EG⊥平面ABCD,且EG=12PA.在△PAB中,AP=AB,∠PAB=90°,BP=2,∴AP=AB=2,EG=22.∴S△ABC=12AB·BC=12×2×2=2.∴VE-ABC=13S△ABC·EG=13×2×22=13.2.已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=18cm,BC=24cm,AC=30cm,求球的体积和表面积.解析∵AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°.∴过A、B、C三点的截面圆的半径为12AC=15(cm).设球的半径为R,则R2=(R2)2+152.∴R2=300,∴R=103(cm).∴V球=43πR3=40003π(cm3),S球=4πR2=1200π(cm2).

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功