太阳能电池材料的研究现状及未来发展太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽E:应在1.1eV-13W之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产.1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后10多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量己经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡.1.不同材料太阳电池分类及特性简介太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等儿大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本.1晶体硅太阳电池晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的.2硅基薄膜太阳电池多晶硅(ploy-Si)薄膜和非晶硅(a-Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对阳光的吸收系数高,活性层只有1m厚,材料的需求量大大减少,沉积温度低(约200'C),可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长波区域不敏感,限制了非晶硅电池的效率,且其效率会随着光照时间的延续而衰减(即光致衰退),使电池性能不稳定.3化合物半导体薄膜太阳电池化合物半导体薄膜太阳电池主要有铜锢硒(CIS)和铜锢稼硒(CIGS)、CdTe,GaAs等,它们都是直接带隙材料,带隙宽度Eg在1-1.6eV之间,具有很好大范围太阳光谱响应特性.所需材料只要几个微米厚就能吸收阳光的绝大部分,是制作薄膜太阳电池的优选活性材料.GaAs带隙宽度1.45eV,是非常理想直接迁移型半导体PV材料,在GaAs单晶衬底上生长单结电池效率超过25%,但价格也高,用于空间.CIS和CIGS电池中所需CIS,CIGS薄膜厚度很小(约2m),吸收率高达105/cm.CIS电池的带隙Eg为1.04eV,是间接迁移型半导体,为了提高效率,只要将Ga替代CIS材料中部分In,形成Culn1-xGaxSe2(简称CIGS)四元化合物,掺Ga目的将带隙宽度Eg调到1.5eV,因而CIGS电池效率高.CIS和CIGS电池由于廉价、高效、性能稳定和较强的抗辐射能力得到各国PV界的重视,成为最有前途新一代太阳电池,非常有希望在未来十年大规模应用.缺点是Se,In都是稀有元素,大规模生产材料来源受到一定限制.CdTe电池的带隙E:为1.5eV,光谱响应与太阳光谱十分吻合,性能稳定,光吸收系数极大,厚度为1m的薄膜,足以吸收大于CdTe禁带能量的辐射能量的99%,是理想化合物半导体材料,理论效率为30%,是公认的高效廉价薄膜电池材料,一直被PV界看重.缺点是Cd有毒,会对环境产生污染.因此CdTe池用在空间等特殊环境.4染料敏化Ti02纳米薄膜太阳电池1991年瑞士Gratzel教授以纳米多孔TiO:为半导体电极,以Ru络合物作敏化染料,并选用23/II-氧化还原电解质,发展了一种新型的染料敏化TiO:纳米薄膜太阳电池(简称DSC).DSC具有理论转换效率高,透明性高,廉价成本和简单工艺等优点,实验室光电效率稳定在10%以上.缺点是使用液体电解质,带来使用不便以及对环境影响.染料敏化TiO:纳米化学太阳能电池受到国内外科学家的重视.目前对它的研究处于起步阶段,近年来成为世界各国争相开发研究热点.2不同材料太阳电池主要制备工艺、典型结构、效率比较分析2.1单晶硅太阳电池单晶硅太阳电池制备和加工工艺:一般以高纯度单晶硅棒原料,有的也用半导体碎片或半导体单晶硅的头尾料,经过复拉制成太阳电池专用的单晶硅棒.在电弧炉中用碳还原石英砂制成纯度约99%冶金级半导体硅,然后将它在硫化床反应器进行化学反应,使其杂质水平低于10-11%,达到电子级半导体硅要求.将单晶硅棒切成厚约300m硅片作太阳电池原料片,通过在硅片上掺杂和扩散,硅片上形成了pn结,然后采用丝网印刷法,将银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面上涂减反射膜,这样,单晶硅太阳电池单体片就制成了.经检验后的单体片按需要规格组装成太阳电池组件(太阳电池板),用串联和并联的方法构成一定输出开路电压和短路电流.2.2多晶硅太阳电池浇铸多晶硅技术是降低成本的重要途径之一,该技术省去昂贵单晶拉制过程,用纯度低的硅作投炉料,耗料、耗电较小.铸锭工艺主要有定向凝固法和烧铸法两种.定向凝固法:将硅料放在增祸中加以熔融,从增竭底部通上冷源形成一定温度梯度,使固液界面从增锅底部向上移动形成晶锭.烧铸法:选择多晶块料或单晶硅头尾料,破碎后用1:5氢氟酸和硝酸混合液进行适当腐蚀,用离子水冲洗呈中性,并烘干.用石英增祸装好多晶硅材料,加入适量硼硅,放入烧铸炉,在真空状态下加热熔化,熔化后保温20min,然后注入石墨铸模中,待慢慢凝固冷却后得多晶硅锭.晶体硅太阳电池典型结构、效率等如表1所示.2.3多晶硅薄膜太阳电池通常的晶体硅太阳电池是在厚度350450mm的高质量硅片上制成的,实际消耗的硅材料较多.为了节省材料,人们从20世纪70年代中期就开始在廉价的衬底上沉积多晶硅薄膜,用相对薄晶体硅层作电池激活层.目前制备多晶硅薄膜电池工艺方法主要有以下几种:化学气相沉积(CVD)法;低压化学气相沉积(LPCVD)法;等离子增强化学气相沉积(PECVD)法;液相外延(LPE)法;快速热CVD(RTCVD)法;溅射沉积(PSM)法等.CVD:艺:以SiH2Cl2.SiHCl3,SiCl4或SiH;作反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si,Si02,Si3N;等.但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙.解决这一问题办法是先用LPCVD法在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层晶粒上沉积厚的多晶硅薄膜.该工艺中区熔再结晶(ZMR)技术无疑是很重要的一个环节.2.4非晶硅薄膜太阳电池非晶硅薄膜太阳电池典型制备工艺:一般用高频辉光放电、PECVD等方法制备.辉光放电法是将石英容器抽成真空,充入氢气或氢气稀释硅烷(SiH4),用射频电源加热,使硅烷电离形成等离子体.非晶硅薄膜就沉积在被加热的衬底上.若在硅烷中掺入适量氢化磷或氢化硼,可得n型或p型非晶硅膜.非晶硅中由于原子排列缺少结晶硅的规则性,缺陷多.为此,要在p层与n层之间加入较厚的本征层i,非晶硅薄膜电池一般具有p-i-n结构.为了提高光电效率和改善稳定性,通常制备p-i–n/p-i–n/p-i-n叠层太阳能电池,叠层太阳电池是在制备的p-i-n单结太阳能电池上再沉积一个或多个p-i-n形成的双结或三结非晶硅薄膜电池.非晶硅太阳电池在玻璃(glass)衬底上沉积透明导电膜(TCO),然后依次用等离子反应沉积p-i-n三层非晶硅,再蒸镀铝(Al)电极.光从玻璃入射,电池电流从导电膜和铝引出,双结非晶硅薄膜电池结构为glass/TCO/p-i-n/p-i-n/ZnO/Ag/Al,衬底为不锈钢和塑料膜等.为了增加短波区的光谱响应,采用梯度膜层的a-SiC窗口涂层和微晶硅p膜层;为了增加长波区的光谱响应,采用绒面TCO膜、绒面多层背反射电极(ZnO/Ag/Al)和多带隙叠层结构,从而提高光电转换效率表2为多晶硅薄膜太阳电池比较,表3为非晶硅薄膜太阳电池及组件比较2.5CIS和CIGS薄膜太阳电池CIS电池薄膜的生长工艺主要有真空蒸发法、铜锢合金膜的硒化处理法等.蒸发法是采用各自的蒸发源蒸镀铜、锢和硒,硒化处理法是使用H2Se叠层膜硒化,但该法难以得到均匀的CIS.CIS电池结构:金属栅状电极碱反射膜/窗口层(ZnO)/过渡层(CdS)/光吸收层(CIS)/金属背电极(MO)/衬底.经过多年研究,CIS电池发展了不同结构,主要差别在于窗口的选择.CIS薄膜电池从80年代初8%的效率发展到目前的15%左右.CIS薄膜太阳电池具有价格低廉、性能良好和制作工艺简单等优点,将成为今后发展太阳能电池的一个重要方向.CIGS制备工艺有共蒸法和硒化法.共蒸法是在衬底上用Cu、In和(Ga)Se进行蒸发、反应;硒化法是先在衬底上生长Cu、In和(Ga)Se层,再在Se氛中硒化.成膜方法有溅射法、近空间升华(CSS)法、MOCVD法、电沉积法等,大面积商业化生产采用磁控溅射法.CIGS基本结构:glas/Mo/CIGS/CdS/ZnO.美国能源部可再生能源实验室(NREL)于1999年研制出效率为18.8%CIGS电池,目前CIGS效率达19.2%2.6CdTe薄膜太阳电池CdTe薄膜生长工艺主要有:丝网印刷烧结法,真空蒸发法,近空间升华法,电镀沉积法等.丝网印刷烧结法:由含CdTe,CdS浆料进行丝网印刷CdTe,CdS膜,然后在600700C可控气氛下进行热处理1h得大晶粒薄膜.近空间升华法:采用玻璃作衬底,衬底温度500600C,沉积速率10itm/min.真空蒸发法:将CdTe从约700℃加热钳祸中升华,冷凝在300-400℃衬底上,典型沉积速率1nm/s.以CdTe吸收层,US作窗口层半导体异质结电池的典型结构:减反射膜/玻璃/(Sn02:F)/CdS/P-CdTe/背电极.CdTe电池实验室效率16.4%,商业化电池平均效率8%-10%2.7染料敏化Ti02纳米薄膜太阳电池TiO:纳米太阳电池制备:先合成TiO:纳米粒子,合成方法很多,包括液相水解法、气相火焰法、TiCl;气相氧化法、溶胶凝胶法等,多数用水解法,然后将制得Ti02纳米粒子微粒均匀涂于导电玻璃上,在室温干燥l0min,在50℃下处理15min,再以20-50C/min的速率升温至450℃处理30min,冷却后得10Rm厚纳米多孔TiO:膜.在纳米粒子上吸附一层高效染料敏化剂形成阳极,染料敏化剂为Ru络合物,1993年报道效率为11%.TiO:纳米太阳电池结构:导电玻璃/多孔纳米TiO:膜/染料敏化剂/电解液随明电极3太阳能电池研究现状3.1单晶硅、多晶硅太阳电池目前研究的主要任务是在提高效率同时如何进一步降低成本采用发射极钝化、倒金字塔表面织构化、分区掺杂、刻槽埋栅电极和双层减反射膜等技术工艺提高效率.有的采用新工艺技术研制新型结构电池,如日本Sanyo公司研制川T电池,采用PECVD工艺在n型单晶硅片上下面沉积非晶硅层,构成异质结电池,大面积效率21%.目前,晶体硅太阳电池向薄片化方向发展,通过制备条带状硅提高材料利用率,在商业生产上普遍采用限边喂