466Vol.46No.6JOURNALOFSHANDONGUNIVERSITYENGINEERINGSCIENCE201612Dec.20162016-04-112016-11-2314∶04∶50http//.cnki.net/kcms/detail/37.1391.T.20161123.1404.002.html511082491988—.E-mail940247134@qq.com*1978—.E-mailzhangfeng2008@sdu.edu.cn1672-3961201606-0120-07DOI10.6040/j.issn.1672-3961.0.2016.11712311111.2500612.4300503.210061、Midas/Civilmultitierdistributedapplicationsservices/Civil。—110m+110m、。。382kN0.96%1.67%-7mm。。Midas/CivilU441AMechanicalpropertiesoftowerandbeamsynchronousconstructionofcable-stayedbridgeZHANGWanzhi1LIUHua23ZHANGFeng1GAOLei1YAOChen1LIUGuanzhi11.SchoolofCivilEngineeringShandongUniversityJinan250061ShandongChina2.ChinaZhongtieMajorBridgeReconnaissanceandDesignInstituteCoLTDWuhan430050HubeiChina3.ChinaZhongtieMajorBridgeNanjingBridgeandTunnelDetectingandTreatmentCoLTDNanjing210061JiangsuChinaAbstractToinvestigatethechangeofmechanicalpropertiesofthebeamtowerandcablesduringthetowerandbeamsynchronousconstructionofthebridgetogetherwithsegmentalremovingthefullscaffoldthecalculationmodeloftheconstructionprocessofcable-stayedbridgewasestablishedbymultitierdistributedapplicationsservices/CivilMidas/Civilfiniteelementsoftware.Againstthecontextofthemaximumswivelweightofcable-stayedbridgeinAsia—Zouchengcable-stayedbridgethemainspanis220msingletower、doublecolumn、doublespananddoublecableplaneprestressedconcretecable-stayedbridgethestructurestressandthedeformationofthecable-stayedbridgewereanalyzed.Fullscaffoldsweresimulatedbyelasticconnectionelementsandbeamandtowerbyspatialbeamelements.Theresultsofnumericalcalculationandfieldtestdatawerecomparedandanalyzedwhichshowedthatbeforeandaf-terthedemolitionoffullscaffoldthemaximumaddedvalueofthesupportforcewas382kNthecalculatedmaximumvalueandthemeasuredmaximumvalueforthechangesofthecableforcewererespectively0.96%and1.67%andthelinearmaximumvariationwas-7mm.Thepremiseoftheapplicationoftheconstructionmethodtowerandbeam6121synchronousconstructionofcable-stayedbridgetogetherwithsegmentalremovingthefullscaffoldisthatthecableforceofthecorrespondingsegmentofthebeamshouldhavebeenapplied.Keywordscable-stayedbridgetowerandbeamsynchronousconstructionfullscaffoldMidas/Civilfiniteelementmechanicalproperties0、、。1。、2。LOZANO-GALANTJAforwardalgo-rithmFA3。、45。、6-7。“”。89、10。。、Midas/Civil、1112、13、14。15-19Midas/Civil、、。2015-04-10、、。114。1。1~17S1~S17。1、Fig.1Thestay-cablesnumberandthefullscaffoldnumberofZouchengcable-stayedbridge110.0m+110.0m1224651.6m6.0m3.0m346821000t97°99.0m+99.0m8.0m4.2m5.5cm。、、。、1302MPa。JL32YGM-32Φ50。2。2Fig.2Live-actionofconstruction2、、、1。10、1、20~10.0m、10.0~51.5m51.5~99.0m、、0~22.0m、22.0~42.0m、42.0~51.6m。、、、、、、。1Table1Someconstructionstagesofthebridgeconstruction1822、、9S1~S17310S8~S174111S13~S171~75128~17621371S1-S72。29d。2Table2Comparisonoftheconstructiontimesoftheupper-structuredt901101915234、t1782720561233。Madis/Civil3593313454。1302MPa541。、、。3Fig.3FiniteelementmodeloftheZouchengcable-stayedbridge33.1、、、20。1S1~S70S13~S171~7CFC。3。3。3。3Table3InitialtensionforceofcablekNS1S2S3S4S5S6S7S8S91840.01940.02090.02240.02390.02520.02670.02961.03118.51795.01922.02076.02205.02436.52566.02636.02982.03130.01802.51915.02042.02232.02438.52528.02651.02971.03136.5S10S11S12S13S14S15S16S173223.53328.53433.53475.53528.03580.53633.02950.03220.03317.03463.03485.03513.53593.03640.52955.03245.03327.53412.53472.03529.53597.53643.02938.00S1~S741~7S1~S175。40Fig.4ThecableforcechangesbeforeandaftertheremoveoftheNo.0segmentfullscaffold51~7Fig.5ThecableforcechangesbeforeandaftertheremoveoftheNo.1~7segmentfullscaffold4S117.1kN0.96%30.0kN1.67%。5S112.1kN0.70%20.0kN124461.16%。S8605.8MPa610.1MPa1670MPa2.762.742.5。4、5。3.2、。Midas/Civil01~171~78~17。01~17FFC60、1~7、SFC7。61~17Fig.6ThesupportforcechangesoftheNo.1~17segmentfullscaffold7Fig.7ThepermanentsupportforcechangesundertheconstructionstagesMidas/CivilS1~S71~60717.16%。601382kN2~7100kN。S8~S177~170。7。3.3。Midas/Civil0、1~70.6mm。0、1~78、9。8、9S1~S17。80Fig.8ThemeasuredlinearchangesbeforeandaftertheNo.0segmentfullscaffold91~7Fig.9ThemeasuredlinearchangesbeforeandafterthedemolitionoftheNo.1-7segmentfullscaffoldNA730km1.2mm。806mm612591~7-7mm。3.4。0。。1m1m10。。10Fig.10Planedistributionofstressmeasurementpointsofmaintower0、1~7、4。4。40、1~7-0.3MPa。4Table4ThestressintheconsolidationpositionbetweenthebeamandthetowerMPa-3.5-3.9-3.5-2.9-3.3-3.5-4.0-3.8-3.0-3.5-5.7-6.2-5.6-4.1-4.5-5.7-6.3-5.9-4.1-4.84101382kN18.5%。2。。3。、。1.J.201321202.YOUChaohuiWEIXing.LinearcontrolofmaingirderofcablestayedbridgewithfullscaffoldmethodJ.Sci-ence-TechnologyEnterprise201321202.2.J.20157156-160.SHIChenghua.Studyontheintegralcalculationanalysisandmonitoringtechnologyofcast-in-situboxgirderbowl-fullscaffoldconstructionJ.Highway20157156-160.3LOZANO-GALANTJAPAYA-ZAFORTEZAIXUDetal.ForwardAlgorithmfortheconstructioncontrolofcable-stayedbridgesbuiltontemporarysupportsJ.EngineeringStructures2012407119-130.4.J.20134121264682-87.SUWeiguoLIUJian.Finiteelementanalysisofcast-in-situboxgirderbowlfullscaffoldJ.JournalofSouthChinaUniversityofTechnologyNaturalScienceEdi-tion201341282-87.5.J.201311362-365.LIUDonghai