第1页(共20页)2014年山东省高考数学试卷(文科)一.选择题每小题5分,共50分1.(5分)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4iB.3+4iC.4﹣3iD.4+3i2.(5分)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2)C.[1,2)D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>6.(5分)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<17.(5分)已知向量=(1,),=(3,m),若向量,的夹角为,则实第2页(共20页)数m=()A.2B.C.0D.﹣8.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.189.(5分)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanxD.f(x)=cos(x+1)10.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.2二.填空题每小题5分,共25分11.(5分)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为.第3页(共20页)12.(5分)函数y=sin2x+cos2x的最小正周期为.13.(5分)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.14.(5分)圆心在直线x﹣2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为.15.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F,若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.三.解答题共6小题,共75分16.(12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABC数量50150100(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.17.(12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,第4页(共20页)B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.19.(12分)在等差数列{an}中,已知公差d=2,a2是a1与a4的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=a,记Tn=﹣b1+b2﹣b3+b4﹣…+(﹣1)nbn,求Tn.20.(13分)设函数f(x)=alnx+,其中a为常数.(Ⅰ)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)讨论函数f(x)的单调性.21.(14分)在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x被椭圆C截得的线段长为.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.第5页(共20页)2014年山东省高考数学试卷(文科)参考答案与试题解析一.选择题每小题5分,共50分1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a+i=2﹣bi,则(a+bi)2=()A.3﹣4iB.3+4iC.4﹣3iD.4+3i【分析】利用两个复数相等的充要条件求得a、b的值,再利用两个复数代数形式的乘法法则求得(a+bi)2的值.【解答】解:∵a+i=2﹣bi,∴a=2、b=﹣1,则(a+bi)2=(2﹣i)2=3﹣4i,故选:A.2.(5分)(2014•山东)设集合A={x|x2﹣2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2]B.(1,2)C.[1,2)D.(1,4)【分析】分别解出集合A和B,再根据交集的定义计算即可.【解答】解:A={x|0<x<2},B={x|1≤x≤4},∴A∩B={x|1≤x<2}.故选:C.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,2)B.(0,2]C.(2,+∞)D.[2,+∞)【分析】分析可知,,解出x即可.【解答】解:由题意可得,,解得,即x>2.第6页(共20页)∴所求定义域为(2,+∞).故选:C.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.5.(5分)(2014•山东)已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是()A.x3>y3B.sinx>sinyC.ln(x2+1)>ln(y2+1)D.>【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足ax<ay(0<a<1),∴x>y,A.当x>y时,x3>y3,恒成立,B.当x=π,y=时,满足x>y,但sinx>siny不成立.C.若ln(x2+1)>ln(y2+1),则等价为x2>y2成立,当x=1,y=﹣1时,满足x>y,但x2>y2不成立.D.若>,则等价为x2+1<y2+1,即x2<y2,当x=1,y=﹣1时,满足第7页(共20页)x>y,但x2<y2不成立.故选:A.6.(5分)(2014•山东)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1【分析】根据对数函数的图象和性质即可得到结论.【解答】解:∵函数单调递减,∴0<a<1,当x=1时loga(x+c)=loga(1+c)<0,即1+c>1,即c>0,当x=0时loga(x+c)=logac>0,即c<1,即0<c<1,故选:D.7.(5分)(2014•山东)已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣【分析】由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.【解答】解:由题意可得cos===,解得m=,故选:B.8.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),第8页(共20页)[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.9.(5分)(2014•山东)对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,下列函数中是准偶函数的是()A.f(x)=B.f(x)=x2C.f(x)=tanxD.f(x)=cos(x+1)【分析】由题意判断f(x)为准偶函数的对称轴,然后判断选项即可.【解答】解:对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a﹣x),则称f(x)为准偶函数,∴函数的对称轴是x=a,a≠0,选项A函数没有对称轴;选项B、函数的对称轴是x=0,选项C,函数没有对称轴.函数f(x)=cos(x+1),有对称轴,且x=0不是对称轴,选项D正确.第9页(共20页)故选:D.10.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5B.4C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.第10页(共20页)二.填空题每小题5分,共25分11.(5分)(2014•山东)执行如图所示的程序框图,若输入的x的值为1,则输出的n的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.12.(5分)(2014•山东)函数y=sin2x+cos2x的最小正周期为π.【分析】利用两角和的正弦公式、二倍角的余弦公式化简函数的解析式为f(x)=sin(2x+),从而求得函数的最小正周期【解答】解:∵函数y=sin2x+cos2x=sin2x+=sin(2x+)+,故函数的最小正周期的最小正周期为=π,故答案为:π.第11页(共20页)13.(5分)(2014•山东)一个六棱锥的体积为2,其底面是边