一、功的概念1.定义:物体受到力的作用,并在力方向上发生一段位移,就说力对物体做了功.2.公式:W=FLcosα,其中α为F与L的夹角,F是力的大小,L一般是物体相对地面的位移,而不是相对于和它接触的物体的位移.3.应用中的注意点①公式只适用于恒力做功②F和L是对应同一个物体的;③恒力做功多少只与F、L及二者夹角余弦有关,而与物体的加速度大小、速度大小、运动时间长短等都无关,即与物体的运动性质无关,同时与有无其它力做功也无关。4.物理意义:功是能量转化的量度.5.单位:焦耳(J)1J=1N·m.6.功是标量,没有方向、但是有正负,正负表示物体是输入了能量还是输出了能量.①当0≤α<90°时W>0,力对物体做正功;若物体做直线运动,由力和位移夹角来判断较方便。②当α=90时W=0,力对物体不做功;③当90°<α≤180°时,W<0,力对物体做负功或说成物体克服这个力做功.若物体做曲线运动,利用力和速度的夹角来判断做。①0≤α<90O时,力对物体做正功;②α=90O时,力对物体不做功。③90O<α≤180O时,力对物体做负功(或物体克服力做功)。7.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为cosSFW(为合力与位移方向的夹角)(2)合力的功等于各分力所做功的代数和,即21二、变力做功的计算公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法cosFsW1、微元法对于变力做功,不能直接用公式进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用公式求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的使用性。但在高中阶段主要用于解决大小不变,方向总与运动方向相同或相反的变力的做功问题。每一小段,就可利用公式W=Flcosα计算功。再把所有的功都加起来,就是变力整个过程所做的功。每小段都足够小直线经过时间足够短恒力(微积分初步思想)12F....1234例1、用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物体的质量为m,物体与轨道间的动摩擦因数为μ。求此过程中的摩擦力所做的功。分析解答:把圆轨道分成无穷多个微元段S1,S2,S3,Sn.摩擦力在每一段上可认为是恒力,则每一段是摩擦力的功分别nnmgsWmgsWmgsWmgsW,,,332211mgRssssmg2)(321321摩擦力在一周内所做的功。小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式,如力的大小不变而方向总与运动方向相同或相反时,可用公式计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。发散演习1:如图所示,某个力F=10N作用与半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点的切线方向保持一致。则转动半圆,这个力F做功多少?答案:31.4J发散演习2如图所示,某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为()A0B20πJC10JD20J发散演习3如图所示,在水平面上,有一弯曲的槽道AB,槽道由半径分别为R/2和R的两个半圆构成.现用大小恒为F的拉力将一光滑小球从A点沿槽道拉至B点,若拉力F的方向始终与小球运动方向一致,则此过程中拉力所做的功为()A零BFRC3πFR/2D2πFRABRFR/2在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s,如果作用在物体上的力是恒力,则其F-s图象如图4所示。经过一端时间物体发生的位移为S,则图线与坐标轴所围成的面积(阴影面积)在数值上等于对物体做的功W=Fs,s轴上方的面积表示对物体做的正功,S轴下方的面积表示力对物体做负功(如图(b)所示)。2、图象法如果F-s图象是一条曲线(如图5所示),表示力的大小随位移不断变化,在曲线下方作阶梯形折线,则折线下放每个小矩形面积分别表示相应恒力所做的功。当阶梯折线越分越密时,这些小矩形的总面积越趋进于曲线下方的总面积,可见曲线与坐标所围成的面积在数值上等于变力所做的功。由于F-s图象可以计算功,因此F-s图象又称为示功图。例2、子弹以速度v0射入墙壁,如射深度为h,若子弹在墙壁中受到的阻力与深度成正比,欲使子弹的入射深度为2h,求子弹的速度应增大到多少?正确解答:设射入深度为h时,子弹克服阻力做功w1;射入深度为2h时,子弹克服阻力做功W2。由图6可知W2=4W1思路点拨:阻力随深度的变化图象如图6所示,由图象求出子弹克服阻力所做的功,在由动能定理进行求解。021201mvW02122mvW02Vv根据动能定理,子弹减少的动能用于克服阻力做功,有联立求解得:发散演习1:一物体以初速度v0冲向与竖起墙壁相连的轻质弹簧,墙壁与物体间的弹簧被物体压缩,在此过程中,下列说法正确的是:()A、物体对弹簧做的功与弹簧的压缩量成正比B、物体向墙壁移动相同的距离,弹力做的功不相等C、弹力做正功,弹簧的弹性势能减小D、弹力做负功,弹簧的弹性势能增加BCD答案:2250J10052501010hhhmgMgF提示:作用在物体和铁索上的力至少应等于物体和铁索的重力,但在拉起来的过程中,铁索长度逐渐缩短,因此拉力也逐渐减小,即拉力是一个随距离长度变化的变力,从物体在井底开始算起,拉力随深度h的变化关系是JJW2250102200250作出图线如图9所示,利用示功图求解拉力的功(可用图中梯形面积),得出发散练习2:用质量为5kg的均匀铁索从10m深的井中吊起一质量为20kg的物体,在这个过程中至少要做多少功?(g取10m/S2)发散练习3:一辆汽车质量为1×105kg,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离是线形关系,且F=103s+5×104N,Ff是车所受阻力,当该车前进100m时,牵引力做了多少功?J7101作出F-s图象如图10所示,图中梯形OABD的面积表示牵引力的功,所以451051010105.0NkmgFf4310510sFJJW74100.1210010155答案:提示:阻力则牵引力为例3汽车的质量为m,输出功率恒为P,沿平直公路前进距离s的过程中,其速度由v1增至最大速v2。假定汽车在运动过程中所受阻力恒定,则汽车通过距离s所用的时间为___.思路点拨:汽车以恒定的功率P加速时,由P=Fv可知,牵引力逐渐减小,汽车做加速度逐渐减小的加速运动,当F=Ff时,加速度减小到零,速度达到最大,然后以最大的速度做匀速直线运动。3、利用W=Pt求变力做功这是一种等效代换的观点,用W=Pt计算功时,必须满足变力的功率是一定的。①②两式联立得2vPFf21222121mvmvsFPft221222)(vsPvvmt正确解答:当F=f时,汽车的速度达到最大v2,由P=Fv,可得对汽车,根据动能定有:①②)(2121vvv212vvsvst)(2121vvvsvPvPsFW)(2121求平均牵引力)(2121FFF误点警示:有同学可能这样解:平均速度时间这样解是错误的,因为汽车的运动不是匀加速运动,不能用求平均速度。小结点评:汽车以恒定的功率启动时,牵引力是变力,牵引力的功不能用W=Fs计算,但可以用W=Pt计算,若用求牵引力的功也是错误的.因为牵引力随位移的变化不是线性关系,不能用发散演习1:质量为m的汽车在平直的公路上从速度v0开始加速行使,经过一段时间t后,前进了距离s,此时恰好达到其最大速度vmax,设此过程中汽车发动机始终以额定功率P工作,汽车所受的阻力为恒力Ff则这段时间里,发动机所做的功为:()tvFAfmax.PtB.stvvmC0max.tvvFDf2.max0提示:发动机所做的功即为发动机牵引力所做的功,由功率定义W=Pt可知,选项B正确。答案:A、BtvFPtWfmax2max0vv汽车以恒定功率启动,当F=Ff时,达到最速度vmax,应有P=Fvmax=Ffvmax所以选项A正确。选项C、D均将汽车的运动看作匀变速运动,其中选项C是先求出a,再求出合外力ma的功,选项D是先算出平均速度tvFf然后用,表示发动机做的功显然都是错误的,因为机车的运动是变加速运动而不是匀变速运动如果变力的方向与位移方向始终一致而大小随位移线性变化,则可求出平均力等效代入公式W=Fscosθ求解。4、平均力法【例4】一辆汽车质量为105kg,从静止开始行驶,行驶过程中所受阻力f为车重的0.05倍,发动机产生的牵引力F的大小与前进的距离x之间有如下关系F=103x+f。求当该车前进100m时,牵引力所做的功是多少?(g取10m/s2)【练习1】用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内深度为d.问击第二次时,能击入多少深度?(设铁锤每次做功相等)设阻力与深度间的比例系为K,Ff=ks由于Ff随位移是线性变化的所以的平均值为ksFf02120210021mvhkh122102021mvhk202vv小结点评:若力随位移按一次方函数关系变化时,求功时可用平均作用力来代替这个变力,用恒力功的公式求功,也可用图象求功;若力随位移的变化不是一次函数关系,则可用F--s图象求功,而不能用平均值求功。根据动能定理,有练习2、子弹以速度v0射入墙壁,如射深度为h,若子弹在墙壁中受到的阻力与深度成正比,欲使子弹的入射深度为2h,求子弹的速度应增大到多少?这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。例5。如图11所示,质量m=2kg的小球系在轻细橡皮条一端,另一端固定在悬点O处。将橡皮条拉直至水平位置OA处(橡皮条无形变)然后将小球由A处静止释放,小球达O点正下方h=0.5m处的B点时的速度为v=2m/s。求小球从A运动到B的过程中橡皮条的弹力对小球所做的功。取g=10m/s25、利用功能关系求变力功正确解答:取过B点的水平面为零重力势能参考平面,橡皮条为原长时的弹性势能为零,设在B时橡皮条的弹性势能为EP2,由机械能守恒定律得mghEmvP2221JJJmvmghEP622215.010221222橡皮条的弹性势能增加6J,则小球的机械能必减少6J,故橡皮条的弹力对小球做功-6J。思路点拨:取小球、橡皮条和地球组成的系统为研究对象,在小球从A运动到B的过程中,只有系统内的重力和弹力做功,机械能定恒。小结点评:弹簧或橡皮条的弹力是变力,求此类弹力做功可用机械能守恒定律结合弹力做功与弹性势能变化的关系.2022121mvmv提示:对整个过程应用动能理。发散演习1:1、将一质量为m的物体以初速度为V0竖直向上抛出,落回抛出点时的速度为V,已知空气阻力与速率成正比,则从抛出到落回抛出点的整个过程中,空气阻力做的功为:()答案:发散演习2、如图12所示,物体沿曲面从A点无速度滑下,滑至曲面的最底点B时,下滑的高度为5m,速度为6m/s,若物体的质量为1kg,则下落过程中物体克服阻力做的功为多少?KAKBfGEEWWJ答案:根据动能定理可得发散演习3:如图7所示,有一劲度系数k=500N/m的轻弹簧,左端固定在墙壁上,右端紧靠一质量m=2㎏的物块,物块与水平面间的动摩擦因数0.4,弹簧处于自然状态。现缓慢推动物块使弹簧从B到A处压缩10㎝,然后由静止释放物块,求:(1)弹簧恢复原长时,物块的动能多大?(2)在弹簧恢复原长的过程中,物块的最大动能为多大?答案:(1)1.