第第11章章轴向拉伸、压缩和剪切轴向拉伸、压缩和剪切§§1.11.1概述概述§§1.21.2轴力和轴力图轴力和轴力图§§1.31.3拉压杆件的应力和变形拉压杆件的应力和变形§§1.41.4工程材料的力学性能简介工程材料的力学性能简介§§1.51.5许用应力和强度条件许用应力和强度条件§§1.61.6简单简单桁架的结点位移计算的结点位移计算§§1.71.7应力集中应力集中§§1.81.8拉压超静定问题拉压超静定问题§§1.91.9连接杆件的实用计算连接杆件的实用计算天津大学材料力学天津大学材料力学受力特点:外力合力作用线与杆轴线重合。变形特点:杆件沿轴线方向伸长或缩短。材料力学中的杆件,如果没说明,通常不计自重。轴向拉伸或压缩轴向拉伸或压缩天津大学材料力学天津大学材料力学一、求内力的方法——截面法基本步骤:切、取、代、平切、取、代、平①假想切开mmFNFFF②分段取出③内力代替④建立平衡FNF=0FN=F§1.2截面法轴力及轴力图§1.2截面法轴力及轴力图天津大学材料力学天津大学材料力学mmF'NFFFF'NF=0F'N=F取右半部分:截面内力FN及F'N的作用线与轴线重合——称为轴力。轴力的正负号规定:当杆件受拉,轴力FN背离截面时为正号;当杆件受压,轴力FN指向截面时为负号。天津大学材料力学天津大学材料力学二、轴力和轴力图轴力——轴向拉伸与压缩时的内力①特点:过截面形心、沿截面法线方向;②符号规定:拉伸(拉力)为正、压缩(压力)为负;③轴力的单位:N、kN.轴力图——每个截面上的轴力用图形表示出来①表示出轴力沿杆件轴线方向的变化规律;②易于确定最大轴力及其位置天津大学材料力学天津大学材料力学例1:图示杆受轴向外力作用,已知F=60kN,求杆各段轴力,并绘轴力图。112233F2FAFCBD2F60kN60kN120kNFN图:天津大学材料力学天津大学材料力学画轴力图轴力计算任一截面上的轴力等于一侧外力的代数和。①轴力图画在原图正下方,与原图各截面相对应;②标出正、负号;③标出特征截面的轴力值(不加正负号)、注明单位。④可画竖阴影线、勿画斜阴影线;天津大学材料力学天津大学材料力学例2:求图示杆各段的轴力,并绘轴力图。442233EACBD10kN20kN10kN115kN5kN10kN10kNFN图:5kN天津大学材料力学天津大学材料力学§1.3拉压杆件的应力与变形§1.3拉压杆件的应力与变形一、应力(stress)应力——反映内力的分布集度0limNAFA应力符号:σ应力的量纲为[力]/[长度]2;国际单位为Pa,常用MPa天津大学材料力学天津大学材料力学拉伸实验实验结果观察:①纵向线伸长、横向线缩短;②横向线保持直线,仍与纵向线垂直;③每根纵向线的伸长都相等。1、横截面上的应力天津大学材料力学天津大学材料力学平截面假设轴向拉、压杆件,变形前原为平面的横截面,变形后仍保持为平面,且仍垂直于轴线。横截面上应力均匀分布横截面上应力均匀分布FNNFA正应力(法向应力):沿截面法线方向。天津大学材料力学天津大学材料力学2、圣维南原理(St.VenantPrinciple)杆端加力方式的不同,只对杆端附近截面的应力分布有影响,受影响的长度不超出杆的横向尺寸。天津大学材料力学天津大学材料力学2sin2sincossin)2cos1(2coscos2pp3、斜截面上的应力天津大学材料力学天津大学材料力学例3:图示杆受轴向外力作用,已知F=60kN,AB段直径d1=40mm,BC段直径d2=20mm,求直杆的最大应力。F2FAFCBD2F60kN60kN120kNFN图:天津大学材料力学天津大学材料力学解:1.确定杆各段的轴力。2.计算杆各段的应力AD段:NAN211326π441201095.5MPaπ4010DADADFFdABC段:NN222326π446010191.0MPaπ2010BCBCBCFFdA3.确定杆的最大应力max191.0MPaBC天津大学材料力学天津大学材料力学二、二、变形(变形(deformationdeformation)、应变()、应变(strainstrain))天津大学材料力学天津大学材料力学E——弹性模量(材料常数),衡量材料抵抗弹性变形的能力。EA——杆件的抗拉(压)刚度,表征杆件抵抗轴向拉压变形的能力。NLLFEAE胡克定律(Hooke’sLaw):——变形和轴力的关系——应变和应力的关系天津大学材料力学天津大学材料力学泊松比(Poisson’sRatio):——横向线应变和纵向线应变的关系——横向线应变与纵向线应变之比,材料常数天津大学材料力学天津大学材料力学例4:图示杆受轴向外力作用,已知F=60kN,E=200GPa,AB段直径d1=40mm,BC段直径d2=20mm,且LAD=1m,LBD=3m,LBC=2m,求杆的总变形。F2FAFCBD2F60kN60kN120kNFN图:天津大学材料力学天津大学材料力学解:1.确定杆各段的轴力。2.计算杆各段的变形3NA269141201010.48mmπ401020010DADADFLLEA3.计算杆的总变形3N26914601030.72mmπ401020010DBDBDBFLLEA3N26924601021.91mmπ201020010BCBCBCFLLEA1.910.480.720.71mmACADDBBCLLLL天津大学材料力学天津大学材料力学例5:已知一圆柱形薄壁容器的内径为d,壁厚为t,内部压强为p,试计算该压力容器的应力和变形。用途:输油(气、水)管道、油罐等天津大学材料力学天津大学材料力学解:首先利用截面法计算应力。2pdtσypσxp204xdtdp20tLpdL4xpdt天津大学材料力学天津大学材料力学利用Hooke’sLaw计算变形。2pdEEt环向应变:环向伸长量:22pdsdEt直径改变量:22spdddEt天津大学材料力学天津大学材料力学§1.4工程材料的力学性能简介§1.4工程材料的力学性能简介工程材料的力学性能指标要通过实验测定。影响工程材料力学性能的因素与材料的成份、组织结构密切相关的,同时还与工作条件,如受力方式,加载速度,工作温度等因素有关。在常温、静载(缓慢加载)下的力学行为。构件变形包括——弹性变形、塑性变形根据材料破坏前产生的塑性变形的大小,将材料分为①塑性材料例:低碳钢、铝、铜等;②脆性材料例:铸铁、岩石、普通玻璃等。天津大学材料力学天津大学材料力学条件:常温、静载设备:万能材料试验机方法:《金属拉伸试验方法》(GB228-87)国家标准试件:国家标准《金属拉伸试验试样》(GB6397-86)圆棒形试件和板形试件两种类型。标距AB=l0,长比例试件l0=10d0,短比例试件l0=5d0低碳钢的拉伸实验天津大学材料力学天津大学材料力学天津大学材料力学天津大学材料力学天津大学材料力学天津大学材料力学颈缩阶段强化阶段屈服阶段弹性阶段弹性卸载加工硬化(冷作硬化)天津大学材料力学天津大学材料力学塑性指标sb%-=100001llln%-=100010AAA材料学中规定,δ10≥5%的材料为塑性材料,δ105%的材料为脆性材料。低碳钢Q235的ψ=60%,10=26%。强度指标①屈服极限:②强度极限:①断后伸长率(延伸率):②断面收缩率(截面收缩率):天津大学材料力学天津大学材料力学•多数塑性材料没有明显的屈服阶段•名义屈服极限0.2天津大学材料力学天津大学材料力学铸铁的拉伸实验天津大学材料力学天津大学材料力学•近似地认为应力、应变服从胡克定律:=E•试件断口平齐、粗糙,几乎没有塑性变形——脆性断裂•强度指标:强度极限b铸铁的拉伸实验结果分析:天津大学材料力学天津大学材料力学低碳钢的压缩实验天津大学材料力学天津大学材料力学铸铁的压缩实验抗压强度σbc抗拉强度σbt天津大学材料力学天津大学材料力学§1.5许用应力和强度条件§1.5许用应力和强度条件1、极限应力u塑性材料:u=s、0.2脆性材料:u=bt、bc2、许用应力un(n1,安全系数)关于安全系数:①弥补因计算误差、材料不均匀等因素的影响;②使构件有一定的强度储备。天津大学材料力学天津大学材料力学轴向拉伸或压缩杆件的强度条件:maxmaxNFA①强度校核②截面设计③许用载荷三类强度问题:天津大学材料力学天津大学材料力学例6:图示铸铁圆截面杆,已知F=60kN,AB段直径d1=40mm,BC段直径d2=20mm,若[σc]=350MPa,[σt]=120MPa,试校核该杆的强度。F2FAFCBD2F60kN60kN120kNFN图:天津大学材料力学天津大学材料力学解:1.确定铸铁杆各段的轴力,计算杆的最大拉应力和最大压应力。NANmax21195.5MPaπ4cDADFFdANNmax222191.0MPaπ4tBCBCFFdA2.利用强度条件校核杆的强度。maxc95.5MPacmaxt191.0MPat∴不安全天津大学材料力学天津大学材料力学例7:图示结构,①、②杆为圆形截面,F=90kN,①杆的许用应力[σ1]=100Mpa,②杆的许用应力[σ2]=150Mpa,试求①、②杆的最小直径。AB2m1mF①②天津大学材料力学天津大学材料力学AB2m1mFFN1FN2解:(1)取AB为研究对象,画出受力图。(2)列平衡方程,计算轴力。(3)利用强度条件,确定两杆的最小直径。20,320ANMFF10,30BNMFF122,33NNFFFF24NFdA124NFd222.6mmd119.5mmd天津大学材料力学天津大学材料力学例8:图示结构,斜杆由两根80×80×7的等边角钢组成,横杆由两根10号槽钢组成,若[σ]=120Mpa,试求结构的许用载荷[F].30°ABCFNo.8No.10①②天津大学材料力学天津大学材料力学型钢-型钢表天津大学材料力学天津大学材料力学C30°FFN1FN21212sin30cos303NNNFFFFFF解:(1)列平衡方程,计算轴力。(2)查型钢表,确定两杆的截面面积。23212322210.8cm2.1610m212.748cm2.5510mAA(3)利用强度条件,计算结构的许可载荷。NFA1129.6kN2AF2176.7kN3AF[F]=129.6kN天津大学材料力学天津大学材料力学§1.6简单桁架的结点位移计算§1.6简单桁架的结点位移计算例9:图示结构已知L,A,E,F,α,试求结点A的垂直位移。ABCFLαα①②天津大学材料力学天津大学材料力学xAFFN2FN1yαα122cosNNFFF1122cosNFLFLLLEAEA12cos2cosALFLEAACBF2杆1杆ΔL1ΔL2A'A1A2天津大学材料力学天津大学材料力学例10:简易悬臂吊结构如图示,AC杆由圆钢制成,其直径d=34mm,E1=200GPa,BC杆由木材制成,其横截面为正方形,边长a=170mm,E2=10GPa。试求节点C的水平和垂直位移。AC30°BF=40kN1m②①天津大学材料力学天津大学材料力学C30°F=40kNFN1FN2C1AC30°B②①F=40kNC2C3C4C512180kNsin30cos3069.3kNNNNFFFF20.24mm()CCL