1、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。2、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。角的表示:①用数字表示单独的角,如∠1,∠2,∠3等。②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。3、用一副三角板,可以画出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°4、角的度量(1)、角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。(2)、角的性质①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。②角的大小可以度量,可以比较③角可以参与运算。5、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。OB平分∠AOC∠AOB=∠BOC=21∠AOC(或者∠AOC=2∠AOB=2∠BOC)6、余角和补角AOBC1°=60’,1’=60”①如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中一个角是另一个角的余角。用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β互余;反过来,如果∠α与∠β互余,那么∠α+∠β=90°②如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180°③同角(或等角)的余角相等;同角(或等角)的补角相等。7、对顶角①一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个角叫做互为对顶角,其中一个角叫做另一个角的对顶角。注意:对顶角是成对出现的,它们有公共的顶点;只有两条直线相交时才能形成对顶角。②对顶角的性质:对顶角相等如图,∠1和∠4是对顶角,∠2和∠3是对顶角∠1=∠4,∠2=∠38、平行线:1、概念:在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。注意:①平行线是无限延伸的,无论怎样延伸也不相交。②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。2、平行线公理及其推论(1)、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。(2)、推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。(3)、补充平行线的判定方法:①平行于同一条直线的两直线平行。1234②在同一平面内,垂直于同一条直线的两直线平行。③平行线的定义。9、垂直:(1)、两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。(2)、垂线的性质:性质1:平面内,过一点有且只有一条直线与已知直线垂直。性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。同一平面内,两条直线的位置关系:相交或平行。