事件的独立性①什么叫做互斥事件?什么叫做对立事件?②两个互斥事件A、B有一个发生的概率公式是什么?③若A与A为对立事件,则P(A)与P(A)关系如何?不可能同时发生的两个事件叫做互斥事件;如果两个互斥事件有一个不发生时另一个必发生,这样的两个互斥事件叫对立事件.P(A+B)=P(A)+(B)P(A)+P(Ā)=1复习回顾一般地,如果事件,彼此互斥,那么事件发生(即中恰有一个发生)的概率:12nAAA、、...12nAAA+...+12nAAA、、...1212()()()...()nnPAAAPAPAPA+...+(4).条件概率设事件A和事件B,且P(A)0,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。记作P(B|A).(5).条件概率计算公式:()()(|)()()nABPABPBAnAPA复习回顾注意条件:必须P(A)0思考1:三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A为“第一位同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。事件A的发生会影响事件B发生的概率吗?分析:事件A的发生不会影响事件B发生的概率。于是:)()|(BPABP)|()()(ABPAPABP)()()(BPAPABP1、事件的相互独立性相互独立事件及其同时发生的概率设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立。即事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件。②如果事件A与B相互独立,那么A与B,A与B,A与B是不是相互独立的注:①区别:互斥事件和相互独立事件是两个不同概念:两个事件互斥是指这两个事件不可能同时发生;两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响。相互独立试一试判断事件A,B是否为互斥,互独事件?1.篮球比赛“罚球二次”.事件A表示“第1球罚中”,事件B表示“第2球罚中”.2.袋中有4个白球,3个黑球,从袋中依次取2球.事件A:“取出的是白球”.事件B:“取出的是黑球”(不放回抽取)3.袋中有4个白球,3个黑球,从袋中依次取2球.事件A为“取出的是白球”.事件B为“取出的是白球”.(放回抽取)A与B为互独事件A与B为互独事件A与B为非互独也非互斥事件一般地,如果事件A1,A2……,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1·A2……An)=P(A1)·P(A2)……P(An)例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽中奖中以下事件的概率:(1)都抽到某一指定号码;解:(1)记“第一次抽奖抽到某一指定号码”为事件A,“第二次抽奖抽到某一指定号码”为事件B,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率)(·)()(BPAPABP0025.005.005.0例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽中奖中以下事件的概率:(2)恰有一次抽到某一指定号码;的定义,所求的概率为式和相互独立事件互斥,根据概率加法公与表示。由于事件可以用抽到某一指定号码”)“两次抽奖恰有一次(BABABABA)()(2)()()(·)()()(BPAPBPAPBAPBAP095.005.0)05.01()05.01(05.0例1某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券。奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。如果两次兑奖活动的中奖概率都是0.05,求两次抽中奖中以下事件的概率:(3)至少有一次抽到某一指定号码;2()()(),ABABABABABAB()“两次抽奖恰至少有一次抽到某一指定号码”可以用表示。由于事件和两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为)()()(BAPBAPABP0975.0095.00025.0巩固练习1、在一段时间内,甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定在这段时间内两地是否下雨相互之间没有影响,计算在这段时间内:(1)甲、乙两地都下雨的概率;(2)甲、乙两地都不下雨的概率;(3)其中至少有一方下雨的概率.P=0.2×0.3=0.06P=(1-0.2)×(1-0.3)=0.56P=1-0.56=0.44例2甲、乙二人各进行1次射击,如果2人击中目标的概率都是0.6,计算:(1)两人都击中目标的概率;(2)其中恰由1人击中目标的概率(3)目标被击中的概率解:(1)记“甲射击1次,击中目标”为事件A.“乙射击1次,击中目标”为事件B.答:两人都击中目标的概率是0.36且A与B相互独立,又A与B各射击1次,都击中目标,就是事件A,B同时发生,根据相互独立事件的概率的乘法公式,得到P(A•B)=P(A)•P(B)=0.6×0.6=0.36例2甲、乙二人各进行1次射击,如果2人击中目标的概率都是0.6,计算:(2)其中恰有1人击中目标的概率?解:“二人各射击1次,恰有1人击中目标”包括两种情况:一种是甲击中,乙未击中(事件)BA()()()()()()0.6(10.6)(10.6)0.60.240.240.48PABPABPAPBPAPB答:其中恰由1人击中目标的概率为0.48.根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率是另一种是甲未击中,乙击中(事件Ā•B发生)。BA•根据题意,这两种情况在各射击1次时不可能同时发生,即事件Ā•B与互斥,例2甲、乙二人各进行1次射击比赛,如果2人击中目标的概率都是0.6,计算:(3)目标被击中的概率.解法1:目标被击中的概率是()[()()]0.360.480.84PPABPABPAB解法2:两人都未击中的概率是84.016.01)(1,16.0)6.01()6.01()()()(BAPPBPAPBAP目标的概率因此,至少有一人击中答:至少有一人击中的概率是0.84.例3在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.由题意,这段时间内3个开关是否能够闭合相互之间没有影响。027.0)7.01)(7.01)(7.01()](1)][(1)][(1[)()()()(CPBPAPCPBPAPCBAP所以这段事件内线路正常工作的概率是973.0027.01)(1CBAP答:在这段时间内线路正常工作的概率是0.973CBAJJJ、、解:分别记这段时间内开关能够闭合为事件A,B,C.根据相互独立事件的概率乘法式这段时间内3个开关都不能闭合的概率是4112192例4甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为甲、丙两台机床加工的零件都是一等品的概率为.Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(CPAPCPBPBPAPCAPCBPBAP即①②③解:(Ⅰ)设A、B、C分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有)(891)(CPBP2()3119PC或由①、③得代入②得27[P(C)]2-51P(C)+22=0.解得(舍去)32)(CP.41)(,31)(BPAP.32,41,31将分别代入③、②可得即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.653143321))(1))((1))((1(1)(1)(CPBPAPDPDP.65(Ⅱ)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为练习:某战士射击中靶的概率为0.99.若连续射击两次.求:(1)两次都中靶的概率;(2)至少有一次中靶的概率:(3)至多有一次中靶的概率;(4)目标被击中的概率.分析:设事件A为“第1次射击中靶”.B为“第2次射击中靶”.又∵A与B是相互独立事件.⑴“两次都中靶”是指“事件A发生且事件B发生”即A·B∴P(A·B)=P(A)·P(B)=(2)“至少有一次中靶”是指(中,不中),(不中,中),(中,中)即A·B+A·B+A·B.∴求P(A·B+A·B+A·B)(3)“至多有一次中靶”是指(中,不中),(不中,中),(中,中)即A·B+A·B+A·B.∴求P(A·B+A·B+A·B)(4)“目标被击中”是指(中,不中),(不中,中),(中,中)即A·B+A·B+A·B.∴求P(A·B+A·B+A·B)1.射击时,甲射10次可射中8次;乙射10次可射中7次.则甲,乙同时射中同一目标的概率为_______2.甲袋中有5球(3红,2白),乙袋中有3球(2红,1白).从每袋中任取1球,则至少取到1个白球的概率是___1425353.甲,乙二人单独解一道题,若甲,乙能解对该题的概率分别是m,n.则此题被解对的概率是_______m+n-mn5.加工某产品须经两道工序,这两道工序的次品率分别为a,b.且这两道工序互相独立.产品的合格的概率是__.(1-a)(1-b)4.有一谜语,甲,乙,丙猜对的概率分别是1/5,1/3,1/4.则三人中恰有一人猜对该谜语的概率是_____1330求较复杂事件概率正向反向对立事件的概率分类分步P(A+B)=P(A)+P(B)P(A·B)=P(A)·P(B)(互斥事件)(互独事件)独立事件一定不互斥.互斥事件一定不独立.