上海数学高二知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

数列:1.数列的有关概念:(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N*或它的有限子集{1,2,3,…,n}上的函数。(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:221nan。(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。如:121,2,aa12(2)nnnaaan。2.数列的表示方法:(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。3.数列的分类:4.数列{an}及前n项和之间的关系:123nnSaaaa11,(1),(2)nnnSnaSSn5.等差数列与等比数列对比小结:等差数列等比数列一、定义1(2)nnaadn1(2)nnaqna二、公式1.11naand,nmaanmdnm2.12nnnaaS112nnnad1.11nnaaq,()nmnmaaqnm2.11111111nnnnaqSaqaaqqqq三、性质1.,,2abcbac成等差,称b为a与c的等差中项2.若mnpq(m、n、p、*q),则mnpqaaaa3.nS,2nnSS,32nnSS成等差数列1.2,,abcbac成等比,称b为a与c的等比中项2.若mnpq(m、n、p、*q),则mnpqaaaa3.nS,2nnSS,32nnSS成等比数列(三)不等式1、0abab;0abab;0abab.2、不等式的性质:①abba;②,abbcac;③abacbc;④,0abcacbc,,0abcacbc;⑤,abcdacbd;⑥0,0abcdacbd;⑦0,1nnababnn;⑧0,1nnababnn.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。在字母比较的选择或填空题中,常采用特值法验证。3、一元二次不等式解法:(1)化成标准式:20,(0)axbxca;(2)求出对应的一元二次方程的根;(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。线性规划问题:1.了解线性约束条件、目标函数、可行域、可行解、最优解2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。两类主要的目标函数的几何意义:①zaxby-----直线的截距;②22()()zxayb-----两点的距离或圆的半径;4、均值定理:若0a,0b,则2abab,即2abab.20,02ababab;2ab称为正数a、b的算术平均数,ab称为正数a、b的几何平均数.5、均值定理的应用:设x、y都为正数,则有⑴若xys(和为定值),则当xy时,积xy取得最大值24s.⑵若xyp(积为定值),则当xy时,和xy取得最小值2p.注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。向量——既有大小又有方向的量在此规定下向量可以在平面(或空间)平行移动而不改变。(6)并线向量(平行向量)——方向相同或相反的向量。规定零向量与任意向量平行。(7)向量的加、减法如图:(8)平面向量基本定理(向量的分解定理)的一组基底。(9)向量的坐标表示表示。平面向量的数量积数量积的几何意义:(2)数量积的运算法则[练习]答案:答案:2答案:线段的定比分点直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑵当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:k=y2-y1/x2-x122122221PPxxyy3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线l经过点),(000yxP,且斜率为k)(00xxkyy2、、直线的斜截式方程:已知直线l的斜率为k,且与y轴的交点为),0(bbkxy3.2.2直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211yxPxxP其中),(2121yyxxy-y1/y-y2=x-x1/x-x22、直线的截距式方程:已知直线l与x轴的交点为A)0,(a,与y轴的交点为B),0(b,其中0,0ba3.2.3直线的一般式方程1、直线的一般式方程:关于yx,的二元一次方程0CByAx(A,B不同时为0)2、各种直线方程之间的互化。3.3直线的交点坐标与距离公式3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L1:3x+4y-2=0L1:2x+y+2=034202220xyxy得解:解方程组x=-2,y=2所以L1与L2的交点坐标为M(-2,2)3.3.2两点间距离两点间的距离公式3.3.3点到直线的距离公式1.点到直线距离公式:点),(00yxP到直线0:CByAxl的距离为:2200BACByAxd2、两平行线间的距离公式:已知两条平行线直线1l和2l的一般式方程为1l:01CByAx,2l:02CByAx,则1l与2l的距离为2221BACCd第四章圆与方程4.1.1圆的标准方程1、圆的标准方程:222()()xaybr圆心为A(a,b),半径为r的圆的方程2、点00(,)Mxy与圆222()()xaybr的关系的判断方法:(1)2200()()xayb2r,点在圆外(2)2200()()xayb=2r,点在圆上(3)2200()()xayb2r,点在圆内4.1.2圆的一般方程1、圆的一般方程:022FEyDxyx2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.2.1圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l:0cbyax,圆C:022FEyDxyx,圆的半径为r,圆心)2,2(ED到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当rd时,直线l与圆C相离;(2)当rd时,直线l与圆C相切;(3)当rd时,直线l与圆C相交;4.2.2圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:(1)当21rrl时,圆1C与圆2C相离;(2)当21rrl时,圆1C与圆2C外切;(3)当||21rr21rrl时,圆1C与圆2C相交;(4)当||21rrl时,圆1C与圆2C内切;(5)当||21rrl时,圆1C与圆2C内含;4.2.3直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M对应着唯一确定的有序实数组),,(zyx,x、y、z分别是P、Q、R在x、y、z轴上的坐标2、有序实数组),,(zyx,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组),,(zyx来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M),,(zyx,x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。4.3.2空间两点间的距离公式1、空间中任意一点),,(1111zyxP到点),,(2222zyxP之间的距离公式22122122121)()()(zzyyxxPP圆锥曲线1、平面内与两个定点1F,2F的距离之和等于常数(大于12FF)的点的轨迹称为椭圆.即:|)|2(,2||||2121FFaaMFMF。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程222210xyabab222210yxabab范围axa且bybbxb且aya顶点1,0a、2,0a10,b、20,b10,a、20,a1,0b、2,0b轴长短轴的长2b长轴的长2a焦点1,0Fc、2,0Fc10,Fc、20,Fc焦距222122FFccab对称性关于x轴、y轴、原点对称离心率22101cbeeaa3、平面内与两个定点1F,2F的距离之差的绝对值等于常数(小于12FF)的点的轨迹称为双曲线.即:|)|2(,2||||||2121FFaaMFMF。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程222210,0xyabab222210,0yxabab范围xa或xa,yRya或ya,xR顶点1,0a、2,0a10,a、20,a轴长虚轴的长2b实轴的长2a焦点1,0Fc、2,0Fc10,Fc、20,Fc焦距222122FFccab对称性关于x轴、y轴对称,关于原点中心对称离心率2211cbeeaa渐近线方程byxaayxb5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.7、抛物线的几何性质:标准方程22ypx0p22ypx0p22xpy0p22xpy0p图形顶点0,0对称轴x轴y轴焦点,02pF,02pF0,2pF0,2pF准线方程2px2px2py2py离心率1e

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功