全球卫星定位系统(第四次)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第三章GPS定位中的误差源§3.1概述§3.2钟误差§3.3相对论效应§3.4卫星星历误差§3.5电离层延迟2§3.1概述3与卫星有关的误差卫星轨道误差卫星钟差相对论效应与传播途径有关的误差电离层延迟对流层延迟多路径效应与接收设备有关的误差接收机天线相位中心的偏移和变化接收机钟差接收机内部噪声p127-128GPS测量误差的来源4GPS测量误差的性质①偶然误差内容卫星信号发生部分的随机噪声接收机信号接收处理部分的随机噪声其它外部某些具有随机特征的影响特点随机量级小–毫米级5GPS测量误差的性质②系统误差(偏差-Bias)内容其它具有某种系统性特征的误差特点具有某种系统性特征量级大–最大可达数百米6GPS测量误差的大小①SPS(无SA)1-sigma误差,单位m误差来源偏差随机误差总误差星历数据2.10.02.1卫星钟2.00.72.1电离层4.00.54.0对流层0.50.50.7多路径1.01.01.4接收机观测0.50.20.5用户等效距离误差(UERE),rms5.11.45.3滤波后的UERE,rms5.10.45.11-sigma垂直误差–VDOP=2.512.81-sigma水平误差–HDOP=2.010.27GPS测量误差的大小②SPS(有SA)1-sigma误差,单位m误差来源偏差随机误差总误差星历数据2.10.02.1卫星钟20.00.720.0电离层4.00.54.0对流层0.50.50.7多路径1.01.01.4接收机观测0.50.20.5用户等效距离误差(UERE),rms20.51.420.6滤波后的UERE,rms20.50.420.51-sigma垂直误差–VDOP=2.551.41-sigma水平误差–HDOP=2.041.18GPS测量误差的大小③PPS,双频,P/Y-码1-sigma误差,单位m误差来源偏差随机误差总误差星历数据2.10.02.1卫星钟2.00.72.1电离层1.00.71.2对流层0.50.50.7多路径1.01.01.4接收机观测0.50.20.5用户等效距离误差(UERE),rms3.31.53.6滤波后的UERE,rms3.30.43.31-sigma垂直误差–VDOP=2.58.31-sigma水平误差–HDOP=2.06.69消除或消弱各种误差影响的方法①模型改正法原理:利用模型计算出误差影响的大小,直接对观测值进行修正适用情况:对误差的特性、机制及产生原因有较深刻了解,能建立理论或经验公式所针对的误差源相对论效应电离层延迟对流层延迟卫星钟差限制:有些误差难以模型化P129改正后的观测值=原始观测值+模型改正10消除或消弱各种误差影响的方法②求差法原理:通过观测值间一定方式的相互求差,消去或消弱求差观测值中所包含的相同或相似的误差影响适用情况:误差具有较强的空间、时间或其它类型的相关性。所针对的误差源电离层延迟对流层延迟卫星轨道误差…限制:空间相关性将随着测站间距离的增加而减弱11消除或消弱各种误差影响的方法③参数法原理:采用参数估计的方法,将系统性偏差求解出来适用情况:几乎适用于任何的情况限制:不能同时将所有影响均作为参数来估计12消除或消弱各种误差影响的方法④回避法原理:选择合适的观测地点,避开易产生误差的环境;采用特殊的观测方法;采用特殊的硬件设备,消除或减弱误差的影响适用情况:对误差产生的条件及原因有所了解;具有特殊的设备。所针对的误差源电磁波干扰多路径效应限制:无法完全避免误差的影响,具有一定的盲目性p130三13§3.2钟误差14卫星钟差定义物理同步误差数学同步误差p133应对方法模型改正钟差改正多项式其中a0为ts时刻的时钟偏差,a1为钟的漂移,a2为老化率。相对定位或差分定位2210ocsocstttattaas15接收机钟差定义GPS接收机一般采用石英钟,接收机钟与理想的GPS时之间存在的偏差和漂移。应对方法作为未知数处理相对定位或差分定位16§3.3相对论效应狭义相对论效应广义相对论效应p130173.3相对论效应18狭义相对论和广义相对论狭义相对论1905运动将使时间、空间和物质的质量发生变化广义相对论1915将相对论与引力论进行了统一19相对论效应对卫星钟的影响①狭义相对论原理:时间膨胀。钟的频率与其运动速度有关。对GPS卫星钟的影响:结论:在狭义相对论效应作用下,卫星上钟的频率将变慢221222210[1()](1)2238742997924580.83510sssssssssssVffVVfffccfVffffcGPSVmscmsff若卫星在地心惯性坐标系中的运动速度为,则在地面频率为的钟若安置到卫星上,其频率将变为:即两者的频率差为考虑到卫星的平均运动速度和真空中的光速,则20相对论效应对卫星钟的影响②广义相对论原理:钟的频率与其所处的重力位有关对GPS卫星钟的影响:结论:在广义相对论效应作用下,卫星上钟的频率将变快ffkmkmRsmrRfcfcWWffWWTsTs1022314222210284.526560637810986005.3)11(,则卫星的地心距近似取,近似取,若地面处的地心距其中为:将的差异与放在地面上时钟频率则同一台钟放在卫星上,为,地面测站处的重力位为若卫星所在处的重力位21相对论效应对卫星钟的影响③相对论效应对卫星钟的影响狭义相对论+广义相对论fffff102110449.4:为上时总的变化量钟频率相对于其在地面用下,卫星上义相对论效应的共同作在狭义相对论效应和广sff1令:22解决相对论效应对卫星钟影响的方法方法(分两步):首先考虑假定卫星轨道为圆轨道的情况;然后考虑卫星轨道为椭圆轨道的情况。第一步:第二步:MHzMHz52299999954.10)10449.41(23.1010,调低后的频率为到卫星上去的钟的频率在地面上调低将要搭载GDrococLrrTtttattaattttmscFtEAeFtttt221012110221)()()()(10442807633.42)(sin)(,应为正因而,实际卫星钟的改上改正数时,在卫星钟读数上加在时刻)(sin2290)(tEettr课本上为:因为:km265602290AAF23§3.4卫星星历误差243.4卫星星历(轨道)误差定义由卫星星历给出的卫星在空间的位置与卫星的实际位置之差称为卫星星历误差。广播星历(预报星历)的精度(无SA)20~30米(有SA)100米精密星历(后处理星历)的精度可达1厘米应对方法精密定轨(后处理)相对定位或差分定位25dbdsb星历误差对单点定位的影响星历误差对单点定位的影响主要取决于卫星到接收机的距离以及用于定位或导航的GPS卫星与接收机构成的几何图形星历误差对相对定位的影响26§3.5电离层延迟?27不同民航飞机的最大飞行高度短航线的飞机一般在6000米至9600米飞行,长航线的飞机一般在8000米至12600米飞行,现在的普通民航客机最高飞行高度不会超过12600米,有一些公务机的飞行高度可以达到15000米。28民航飞机平稳飞行时处于哪个层,多少高度?民航飞机只要求能平稳飞行就可以,没有战斗机那么多的性能要求.机动性也不像战斗机那么高.空气在十公里就是平流层了,这个空气层很合适飞行.所以民用飞机的飞行高度在10000米左右29民航飞机的飞行高度层中型以上的民航飞机都在高空飞行,此处的高空是指海拔7000——12000米的空间。在这个空间以1千米为1个高度层,共分为6个高度层:7千米、8千米、9千米、1万米、1万1千米和1万2千米。高空飞行的飞机只允许飞以上给定高空。30另外,民航飞机在飞行时,以正南正北方向为零度界限,凡航向偏右(偏东)的飞机飞双数高层,即8千米、1万米、1万2千米高度层;凡航向偏左(偏西)的飞机飞单数高度层,即7千米、9千米、1万1千米高度层。31例如:民航飞机从北京飞往杭州,杭州位于北京南面偏东方向,飞机必须飞双数高度层,回程则飞单数高度层。又如飞机从沈阳飞往杭州,杭州在沈阳的南面偏西方向飞机须飞单数高度层,回程则飞双数层。这样,相向飞行的飞机不在同一空高,避免了相撞。323.5电离层延迟电离层地球TEC柱体底面积为1m233地球大气结构地球大气层的结构臭氧34大气折射效应大气折射信号在穿过大气时,速度将发生变化,传播路径也将发生弯曲。也称大气延迟。在GPS测量定位中,通常仅考虑信号传播速度的变化。色散介质与非色散介质色散介质:对不同频率的信号,所产生的折射效应也不同非色散介质:对不同频率的信号,所产生的折射效应相同对GPS信号来说,电离层是色散介质,对流层是非色散介质35相速与群速①相速群速相速与群速的关系相折射率与群折射率的关系phphfvvf假设有一电磁波在空间传播,其波长为,频率为该电磁波相位的速度,有=其中相位的速度又简称为相速。。“群速”表示,群速的传播可以用群波来说,其最终能量对于频率略微不同的一2ddfvgrddvvvphphgrphphgrphphdndnnnnfddf36相速与群速②222,,1111phgrphgrphphphgrphphphphphgrphphgrphphphphphphphphphphcccnnnvvvvddvdvdfvvvddddcvnnccndvdvvdnccvddvdnvndvdndnnd1111;phphphphphphphdndndnnnnfndddfddff注:37电离层折射①3242342342223222232222;1...,,,...1221140.3(),phgrphgrphphphgreegrphgrphccvvnncccnfffccccnfcdndffcccnffffccNHzNnnvv其中等与电子密度、电子质量、电子所带电荷等有关系。近似地可取则:有:一般,可取近似值;因为电子密度恒为正值。故,或,即相位超前。38电离层折射②称为总电子含量,,,则令为成的距离延迟电离层折射对相位所造为成的距离延迟电离层折射对相位所造TECTECcfcTTECfTECcfcTTECfdsNTECdsNfdsfcdsdsfcdsdsndsNfdsfcdsdsfcdsdsnionogrphionogrionophphionopheegrionogrionogrephionophionoph;3.403.40;3.403.403.40)1(3.40)1(222222022022022039电子密度与总电子含量电子密度与总电子含量电子密度:单位体积中所包含的电子数。总电子含量(TEC–TotalElectronContent):底面积为一个单位面积时沿信号传播路径贯穿整个电离层的一个柱体内所含的电子总数。电离层地球TEC柱体底面积为1m240电子密度与大气高度的关系41电子含量与地方时的关系42电子含量与太阳活动情况的关系与太阳活动密切相关,太阳活动剧烈时,电子含量增加太阳活动周期约为11年1700年–1995年太阳黑子数43电子含量与地理位置的关系2002.5.151:00–23:002小时间隔全球TEC分布44常用电离层延迟改正方法分类经验模型改正方法:根据以往观测结果所建立的模型改正效果:差

1 / 86
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功