大一轮复习配套讲义(备考基础查清+热点命题悟通):第九章--计数原理与概率、随机变量及其分布

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第九章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.[试一试]1.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数有()A.30B.20C.10D.6解析:选D从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6种.2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有()A.30个B.42个C.36个D.35个解析:选C∵a+bi为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.1.应用两种原理解题(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.2.混合问题一般是先分类再分步,分类时标准要明确,做到不重复不遗漏.[练一练]1.(2013·郑州模拟)在2012年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.∴安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,所以安排方式有5×4×3×2×1=120(种).∴安排这8人的方式有24×120=2880(种).答案:28802.(2014·湖南长郡中学、衡阳八中等十二校一联)用红、黄、蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:把区域分为三部分,第一部分1、5、9,有3种涂法.第二部分4、7、8,当5、7同色时,4、8各有2种涂法,共4种涂法;当5、7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘1234567892法计数原理,可得共有3×6×6=108种涂法.答案:108考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数共有()A.50个B.45个C.36个D.35个解析:选C利用分类加法计数原理:8+7+6+5+4+3+2+1=36(个).2.五名篮球运动员比赛前将外衣放在休息室,比赛后都回到休息室取衣服.由于灯光暗淡,看不清自己的外衣,则至少有两人拿对自己的外衣的情况有()A.30种B.31种C.35种D.40种解析:选B分类:第一类,两人拿对:2×C25=20种;第二类,三人拿对:C35=10种;第三类,四人拿对与五人拿对一样,所以有1种.故共有20+10+1=31种.3.(2013·三门峡模拟)有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析:选B设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).[类题通法]利用分类加法计数原理解题时应注意(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;(2)分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复.考点二分步乘法计数原理[典例](2014·本溪模拟)如图所示的几何体是由一个正三棱锥P­ABC与正三棱柱ABC­A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.[解析]先涂三棱锥P­ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.[答案]12[类题通法]利用分步乘法计数原理解决问题时应注意(1)要按事件发生的过程合理分步,即分步是有先后顺序的.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.(3)对完成每一步的不同方法数要根据条件准确确定.[针对训练]在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,则实验顺序的编排方法共有()A.24种B.48种C.96种D.144种解析:选C第一步安排A有2种方法;第二步在剩余的5个位置选取相邻的两个排B,C,有4种排法,而B,C位置互换有2种方法;第三步安排剩余的3个程序,有A33种排法,共有2×4×2×A33=96种.考点三两个原理的综合应用[典例](2014·黄冈质检)设集合I={1,2,3,4,5}.选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A.50种B.49种C.48种D.47种[解析]从5个元素中选出2个元素,小的给集合A,大的给集合B,有C25=10种选择方法;从5个元素中选出3个元素,有C35=10种选择方法,再把这3个元素从小到大排列,3中间有2个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是2,故此时有10×2=20种选择方法;从5个元素中选出4个元素,有C45=5种选择方法,从小到大排列,中间有3个空,用一个隔板将其隔开,一边给集合A,一边给集合B,方法种数是3,故此时有5×3=15种选择方法;从5个元素中选出5个元素,有C55=1种选择方法,同理隔开方法有4种,故此时有1×4=4种选择方法.根据分类加法计数原理,总计为10+20+15+4=49种选择方法.故选B.[答案]B本例中条件若变为“A={1,2,3,4},B={5,6,7},C={8,9}现从中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合”,则可以组成多少个集合?解:(1)选集合A,B,有C14C13=12;(2)选集合A,C,有C14C12=8;(3)选集合B,C,有C13C12=6;故可以组成12+8+6=26个集合.[类题通法]在解决综合问题时,可能同时应用两个计数原理,即分类的方法可能要运用分步完成,分步的方法可能会采取分类的思想求.分清完成该事情是分类还是分步,“类”间互相独立,“步”间互相联系.[针对训练]上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.解析:若3人中有一人来自甲企业,则共有C12C24种情况,若3人中没有甲企业的,则共有C34种情况,由分类加法计数原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).答案:16第二节排列与组合1.排列与排列数(1)排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作Amn.2.组合与组合数(1)组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作Cmn.3.排列数、组合数的公式及性质公式排列数公式Amn=n(n-1)(n-2)…(n-m+1)=n!n-m!组合数公式Cmn=AmnAmm=nn-1…n-m+1m!=n!m!n-m!性质(1)Ann=n!;(2)0!=1(1)C0n=1;(2)Cmn=Cn-mn_;(3)Cmn+Cm-1n=Cmn+1备注n,m∈N*且m≤n1.易混淆排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.42.计算Amn时易错算为n(n-1)(n-2)…(n-m).3.易混淆排列与排列数,排列是一个具体的排法,不是数是一件事,而排列数是所有排列的个数,是一个正整数.[试一试]1.电视台在直播2012伦敦奥运会时要连续插播5个广告,其中3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的是奥运宣传广告,且2个奥运宣传广告不能连播.则不同的播放方式有()A.120B.48C.36D.18解析:选C有C12C13A33=36(种).2.2010年上海世博会某国将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品不同的方案有________种.(用数字作答)解析:将2件必须相邻的书法作品看作一个整体,同1件建筑设计展品全排列,再将2件不能相邻的绘画作品插空,故共有A22A22A23=24(种)不同的展出方案.答案:241.排列问题与组合问题的识别方法:识别方法排列若交换某两个元素的位置对结果产生影响,则是排列问题,即排列问题与选取元素顺序有关组合若交换某两个元素的位置对结果没有影响,则是组合问题,即组合问题与选取元素顺序无关2.组合数的性质中(2)的应用主要是两个方面,一个简化运算,当m>n2时,通常将计算Cmn转化为计算Cn-mn.二是列等式,由Cxn=Cyn可得x=y或x+y=n.性质(3)主要用于恒等变形简化运算.[练一练]1.(2013·河北教学质量监测)有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次.A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为()A.6B.18C.20D.24解析:选B由题意知,名次排列的种数为C13A33=18.2.5个人站成一排,其中甲、乙两人不相邻的排法有________种.(用数字作答)解析:先排甲、乙之外的3人,有A33种排法,然后将甲、乙两人插入形成的4个空中,有A24种排法,故共有A33·A24=72(种)排法.答案:72考点一排列问题1.数列{an}共有六项,其中四项为1,其余两项各不相同,则满足上述条件的数列{an}共有()A.30个B.31个C.60个D.61个解析:选A在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A26=30个不同的数列.2.(2013·东北三校联考)在数字1,2,3与符号“+”,“-”这五个元素的所有全排列中,任意两个数字都不相邻的全排列方法共有()A.6种B.12种C.18种D.24种解析:选B本题主要考查某些元素不相邻的问题,先排符号“+”,“-”,有A22种排列方法,此时两个符号中间与两端共有3个空位,把数字1,2,3“插空”,有A33种排列方法,因此满足题目要求的排列方法共有A22A33=12种.3.(2013·西安检测)8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号5依次为1,2,3,4,5,6,7

1 / 30
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功