8 函数模型及其应用练习题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

高中数学*必修1数学讲义——雨露教育-1-8函数模型及其应用练习题1某国际快递公司从上海到纽约的一次快递业务报价为:物资快递价格(人民币)不超出10公斤200(元)超出10公斤,不超出20公斤350(元)超出20公斤,不超出40公斤500(元)40公斤以上每增加一公斤加费10元(1)写出快递价格y与快递物资x的函数关系式;(2)某人需要快递50公斤物资,他用一次快递便宜还是分两次快递(一次20公斤,一次30公斤)便宜?2将20米长的一段篱笆沿墙围成三个大小相同的矩形猪窝(如图),用怎样围法面积最大?x3商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款.顾客只能任选其一.某顾客需购茶壶4个,茶杯若干个(不少于4个),若购买茶杯数为x个,付款数为y(元),试分别建立两种优惠办法中y与x之间的函数关系式,并讨论两种办法哪一种更省钱.高中数学*必修1数学讲义——雨露教育-2-4人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766~1834)就提出了自然状态下的人口增长模型:y=y0ert,其中t表示经过的时间,y0表示t=0时的人口数,r表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:年份1950195119521953195419551956195719581959人数/万人55196563005748258796602666145662828645636599467207(1)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?5一种放射性元素,最初的质量为500g,按每年10%衰减.(1)求t年后,这种放射性元素质量ω的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1.已知lg2=0.3010,lg3=0.4771)高中数学*必修1数学讲义——雨露教育-3-6甲、乙两地相距skm,汽车从甲地匀速行驶到乙地,速度不得超过ckm/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度vkm/h的平方成正比,比例系数为b,固定部分为a元.(1)把全程运输成本y(元)表示为速度v(km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?7为了适应国民经济的发展需要,某市政府决下进行经济结构调整,加快发展第三产业.已知该市现有第二产业从业人员100万人,平均每人全年可创造产值a万元,现欲从中分流出x万人去从事第三产业,假设分流后继续从事第二产业的人员平均每人全年创造产值大约可增加2x%,而分流出的从事第三产业的人员,平均每人全年可创造产值ab万元(a,b均为正常数,0<x<100).(1)在保证该市第二产业的产值不能减少的情况下,求x的取值范围.(2)在(1)的条件下,当该市第二、三产业的总产值增加最多时,求x的值.

1 / 3
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功