交错网格与完全匹配层

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

Tche.L.*2017216Version:1.2[1][2][3][4][5][6][7][8]*tcheliu@mail.ustc.edu.cn1Tche.L.xzuxuzxzxz[9]8:Lx(uxi;j)=1∆xN∑n=1C(N)n(uxi+2n12;juxi2n12;j)Lz(uzi;j)=1∆zN∑n=1C(N)n(uzi;j+2n12uzi;j2n12)(1)uuxuz∆x∆zxzC(N)n2N1:d(x)=dx;d(z)=dzPMLPMLPMLPMLPML2Tche.L.PML1PMLxz@@x!i!i!+dx@@x;@@z!i!i!+dz@@z!dxdzxz@u@t=A@v@xPMLi!u=A@v@xPMLxi!u=Ai!i!+dx@v@x(i!+dx)u=A@v@x(@@t+dx)u=A@v@x(2)PMLPMLA@vk@xjk@vkk∆tv∆tu(@@t+dx)uk=@uk@t+dxuk=uk+1/2uk1/2∆t+dxuk+1/2+uk1/22(2)uk+1/2=2∆tdx2+∆tdxuk1/2+2∆t2+∆tdxjk(3)(@@t+dx)uk=@uk@t+dxuk=uk+1/2uk1/2∆t+dxuk1/2(2)uk+1/2=(1∆tdx)uk1/2+∆tjk(4)PMLdx=dz=0PMLPMLdx=dz=03Tche.L.dxdz[10]d(i)=d0(inpml)pxziPMLnpmlPMLp14d0=log(1R)Vsnpml∆d0=Vs∆(c1+c2npml+c3n2pml)R34Vs∆ciRci8:R=0:01;npml=5R=0:001;npml=10R=0:0001;npml=208:c1=815c2=3100c3=11500@u@x=1∆xN∑n=1{C(N)n[u(x+2n12∆x)u(x2n12∆x)]}+O(∆x2N)(5)C(N)n2Nu(x+2n12∆x)u(x2n1x∆x)xTaylorC(N)n266666664113151(2N1)1133353(2N1)3153555(2N1)5...............12N132N152N1(2N1)2N1377777775266666664C(N)1C(N)2C(N)3...C(N)N377777775=266666664100...0377777775C(N)m=(1)m+1N∏i=1;i̸=m(2i1)2(2m1)N∏i=1;i̸=m (2m1)2(2i1)2 (6)4Tche.L.@2P@t2=v2P(@2P@x2+@2P@z2)(7)PvP8:@P@t=v2P(@vx@x+@vz@z)@vx@t=1@P@x@vz@t=1@P@z(8)vxvzxz(8)t(8)(7)PMLxz(8)xz8:P=Px+Pz@Px@t=v2P@vx@x@Pz@t=v2P@vz@z(9)PxPzPxz(8)(9)PML8:(@@t+dx)vx=1@P@x(@@t+dz)vz=1@P@z(@@t+dx)Px=v2P@vx@x(@@t+dz)Pz=v2P@vz@z(10)2(4)(5)PML2N5Tche.L.2:P;v2P▲vx;1/■vz;1/8:vx ki+1/2;j=(1∆tdx)vx k1i+1/2;j∆t∆xN∑n=1{C(N)n[P k1/2i+1/2+(2n1)/2;jP k1/2i+1/2(2n1)/2;j]}vz ki;j+1/2=(1∆tdz)vz k1i;j+1/2∆t∆zN∑n=1{C(N)n[P k1/2i;j+1/2+(2n1)/2P k1/2i;j+1/2(2n1)/2]}Px k+1/2i;j=(1∆tdx)Px k1/2i;jv2P∆t∆xN∑n=1{C(N)n[vx ki+(2n1)/2;jvx ki(2n1)/2;j]}Pz k+1/2i;j=(1∆tdz)Pz k1/2i;jv2P∆t∆zN∑n=1{C(N)n[vz ki;j+(2n1)/2vz ki;j(2n1)/2]}(11)P=Px+Pzvx ki+1/2;j((i+1/2)∆x;j∆z)k∆tvx∆x∆zxz8:@2ux@t2=@@x[(@ux@x+@uz@z)+2@ux@x]+@@z[(@uz@x+@ux@z)]@2uz@t2=@@z[(@ux@x+@uz@z)+2@uz@z]+@@x[(@uz@x+@ux@z)](12)uxuzxz=(v2p2v2s)=v2svpvs6Tche.L.[3]8:@2ux@t2=@xx@x+@xz@z@2uz@t2=@xz@x+@zz@zxx=(+2)@ux@x+@uz@zzz=(+2)@uz@z+@ux@xxz=(@ux@z+@uz@x)(13)(xx;zz;xz)(13)(12)PMLvx=@ux/@tvz=@uz/@t8:@vx@t=1(@xx@x+@xz@z)@vz@t=1(@xz@x+@zz@z)@xx@t=(+2)@vx@x+@vz@z@zz@t=(+2)@vz@z+@vx@x@xz@t=(@vx@z+@vz@x)(14)xzPML(9)8:vx=vxx+vzx;@vxx@t=1@xx@x;@vzx@t=1@xz@zvz=vxz+vzz;@vxz@t=1@xz@x;@vzz@t=1@zz@zxx=xxx+zxx;@xxx@t=(+2)@vx@x;@zxx@t=@vz@zzz=xzz+zzz;@xzz@t=@vx@x;@zzz@t=(+2)@vz@zxz=xxz+zxz;@xxz@t=@vz@x;@zxz@t=@vx@z(15)7Tche.L.3:□vx;1/■vz;1/◦xx;zz;(+2);xz;PML8:(@@t+dx)vxx=1@xx@x;(@@t+dz)vzx=1@xz@z(@@t+dx)vxz=1@xz@x;(@@t+dz)vzz=1@zz@z(@@t+dx)xxx=(+2)@vx@x;(@@t+dz)zxx=@vz@z(@@t+dx)xzz=@vx@x;(@@t+dz)zzz=(+2)@vz@z(@@t+dx)xxz=@vz@x;(@@t+dz)zxz=@vx@z(16)8:vx=vxx+vzxvz=vxz+vxzxx=xxx+zxxzz=xzz+zzzxz=xxz+zxz(17)3(4)(5)PML2N8Tche.L.8:vxx k+1/2i;j=(1∆tdx)vxx k1/2i;j+∆t∆xN∑n=1{C(N)n[xx ki+(2n1)/2;jxx ki(2n1)/2;j]}vzx k+1/2i;j=(1∆tdz)vzx k1/2i;j+∆t∆zN∑n=1{C(N)n[xz ki;j+(2n1)/2xz ki;j(2n1)/2]}vxz k+1/2i+1/2;j+1/2=(1∆tdx)vxz k1/2i+1/2;j+1/2+∆t∆xN∑n=1{C(N)n[xz ki+1/2+(2n1)/2;j+1/2xz ki+1/2(2n1)/2;j+1/2]}vzz k+1/2i+1/2;j+1/2=(1∆tdz)vzz k1/2i+1/2;j+1/2+∆t∆zN∑n=1{Cn(N)[zz ki+1/2;j+1/2+(2n1)/2zz ki+1/2;j+1/2(2n1)/2]}xxx k+1i+1/2;j=(1∆tdx)xxx ki+1/2;j+(+2)∆t∆xN∑n=1{C(N)n[vx k+1/2i+1/2+(2n1)/2;jvx k+1/2i+1/2(2n1)/2;j]}zxx k+1i+1/2;j=(1∆tdz)zxx ki+1/2;j+∆t∆zN∑n=1{C(N)n[vz k+1/2i+1/2;j+(2n1)/2vz k+1/2i+1/2;j(2n1)/2]}xzz k+1i+1/2;j=(1∆tdx)xzz ki+1/2;j+∆t∆xN∑n=1{C(N)n[vx k+1/2i+1/2+(2n1)/2;jvx k+1/2i+1/2(2n1)/2;j]}zzz k+1i+1/2;j=(1∆tdz)zzz ki+1/2;j+(+2)∆t∆zN∑n=1{C(N)n[vz k+1/2i+1/2;j+(2n1)/2vz k+1/2i+1/2;j(2n1)/2]}xxz k+1i;j+1/2=(1∆tdx)xxz ki;j+1/2+∆t∆xN∑n=1{C(N)n[vz k+1/2i+(2n1)/2;j+1/2vz k+1/2i(2n1)/2;j+1/2]}zxz k+1i;j+1/2=(1∆tdz)zxz ki;j+1/2+∆t∆zN∑n=1{C(N)n[vx k+1/2i;j+1/2+(2n1)/2vz k+1/2i;j+1/2(2n1)/2]}(18)(17)vxx k+1/2i;j(i∆x;j∆z)(k+1/2)∆tvxx9Tche.L.[1]AltermanZ.,KaralF.C.,1968.Propagationofelasticwavesinlayeredmediabyfinitedifferencemethods[J].BulletinoftheSeismologicalSocietyofAmerica,58(1),367-398.[2]VirieuxJ.,1984.SH-wavepropagationinheterogeneousmedia:velocity-stressfinite-differencemethod[J].Geophysics,49(11),1933-1942.[3]VirieuxJ.,1986.P-SVwavepropagationinheterogeneousmedia:Velocity-stressfinite-differencemethod[J].Geophysics,51(4),889-901.[4]SaengerE.H.,GoldN.,ShapiroS.A.,2000.Modelingthepropagationofelasticwavesusingamodifiedfinite-differ

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功