From extensional to intensional knowledge Inductiv

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

FromExtensionaltoIntensionalKnowledge:InductiveLogicProgrammingTechniquesandTheirApplicationtoDeductiveDatabasesPeterA.FlachDepartmentofComputerScience,UniversityofBristolMerchantVenturersBuilding,WoodlandRoad,BristolBS81UB,UKPeter.Flach@cs.bris.ac.uk,flach/Abstract.Thischapteraimsatdemonstratingthatinductivelogicpro-gramming(ILP),arecentlyestablishedsub eldofmachinelearningthatinduces rst-orderclausaltheoriesfromexamples,combinesverywellwiththeareaofdeductivedatabases.Inthecontextofdeductivedatabases,inductioncanbede nedasinferenceofintensionalknowledgefromextensionalknowledge.Classi cation-orientedILPapproachescor-respondtoinductionofviewde nitions(IDBrules),whiledescription-orientedILPapproachescorrespondtoinductionofintegrityconstraints.TheapplicabilityofILPmethodsindeductivedatabasesthusincludesinductionofIDBrulesandlearningofintegrityconstraints.Furtherpos-sibleapplicationsarereverseengineering,queryoptimisationandinten-sionalanswers,anddatamining.Thechaptergivesanaccessibleintro-ductiontoILPwithparticularemphasisonapplicationsindeductivedatabases.1IntroductionConsiderthefollowingextensionaldatabase,de ningthebinarypredicatess/2andm/2:s(su,su).s(su,pe).m(mi,pa).s(ro,pe).s(pe,ro).m(ma,pe).s(ro,su).s(pa,pa).m(ma,su).s(pe,pe).s(pe,su).m(ma,ro).s(ro,ro).s(su,ro).Thereaderisinvitedtotakeaminutetotryandmemorisethesetwoextensionalrelationsbeforereadingon.Whenattemptingtomemorisetheserelationsyouwereprobablylookingforregularitieswithintheextensions,orrelationsbetweenthem.Forinstance,youprobablyhavenoticedthats/2isreflexive.Maybeyouhavealsodiscoveredthats/2issymmetric.Andifyouarereallyclever,youmayhaveseenthats/2isanequivalencerelation,sinceitistransitiveaswell!Ifyouwerelookingforrelationsbetweens/2andm/2,youmayhavefurthernoticedthatpe,suandroallareB.Freitagetal.(Eds.):TransactionsandChangeinLogicDBs,LNCS1472,pp.356{387,1998.cSpringer-VerlagBerlinHeidelberg1998InductiveLogicProgrammingTechniques357m-relatedtoma,butpaism-relatedtomi.Youmayevenhavediscoveredthats/2canbede nedintermsofm/2:s(X,Y):-m(M,X),m(M,Y).Noticethatthe rstargumentofm/2canbeseenasenumeratingtheequivalenceclassesofs/2.Thatis,evenifconcentratingonregularitieswithins/2andignoringm/2,youcouldhaveconcludedthatthereexistbinarypredicatesintermsofwhichs/2canbede nedbymeansofaclausesimilartotheoneabove.Wehavejustseensomesimpleexamplesof`intensionalising'extensionallyde nedpredicates.Sinceextensionalrelationscanbeseenascollectionsofin-stances,andintensionalrulesasgeneralhypotheses,theprocessofderivingintensionalfromextensionalrelationscanbeseenasaformofinduction,orlearningfromexamples.Inductivelogicprogramming(ILP)isaformofinduc-tivelearningthatemploysclausallogicasarepresentationformalism,andthusiswell-suitedtointensionalisingextensionalrelations.Thepotentialofapply-ingILPtechniquesinthecontextofdeductivedatabaseshashoweverhardlybeenexplored.ThischapterthereforeaimsatprovidinganintroductiontoILP,aswellasindicatingpossibleapplicationareasforILPtechniquestodeduc-tivedatabases.Broadlyspeaking,wemayemployILPtechniquesindatabasedesign(reverseengineering),inqueryprocessing(optimisationandintensionalanswers),andinknowledgediscovery(inductivequeries).Howdoesinductivelearningindeductivedatabases tintothepictureofdatabasedynamics?Thisdependspartlyuponthenatureoftheextensionaldatathatformsthestartingpointforlearning.Ifthisdataiscomplete,asintheaboveexample,inductivelearningmainlyindicatesredundancyinthedata,andhowtotranslateredundancyintostructure.WewillencounterthisformofinductiveknowledgebaserestructuringinSection3below,whenwediscussinductionoffunctionalandmultivalueddependencies.However,suchcompletenessofextensionaldataisnotaprerequisiteforin-duction,sinceinductivehypothesesaretypicallypredictive,therebycompletingtheextensionaldata.Forinstance,theaboveclausemaystillbefoundifsomeofthefactsfors/2aremissing(clearly,theClosedWorldAssumptionisinap-propriateinsuchacase).InthiscasewearesynthesisingpartoftheIDBfromincompleteextensionalspeci cations.Theseexamplesservetoillustratethatinductivelearningcanbeseen,ontheonehand,asanequivalence-preservingtransformationprocess,andontheotherhand,asageneralisingrevisionprocess.Thechapterisstructuredasfollows.InSection2weprovideagentlein-troductiontoinductivelogicprogramming,concentratingonthemainconceptsandprovidingmanyexamples.Iproceedtodescribemypreviousworkonin-ductiveknowledgebaserestructuringasacase-studyoftheapplicationofILPtechniquestodatabasesinSection3.Section4discussespossibilitiesfortightintegrationbetweenanILPmoduleandaDDBMS.Weendthechapterwithsomeconcludingremarks.358PeterA.Flach2InductiveLogicProgrammingInductivelogicprogramminghasitsrootsinconceptlearningfromexamples,arelativelystraightforwardformofinductionthathasbeenstudiedextensivelybymachinelearningresearchers.Theaimofconceptlearningistodiscover,fromagivensetofpre-classi edexamples,asetofclassi cationruleswithhighpredictivepower.Formanyconceptlearningtasks,so-calledattribute-valuelanguageshavesucientrepresentationalpower.Anexampleofa

1 / 32
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功