一元一次不等式(组)与二元一次方程(组)结合培优资料

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

一元一次不等式(组)与方程(组)的结合培优资料考点·方法·破译1.进一步熟悉二元一次方程组的解法,以及一元二次不等式组的解法.2.综合运用一元一次不等式组和二元一次方程组解决一些典型的实际问题.经典·考题·赏析【例1】求方程3x+27=17的正整数解.【解法指导】一般地,一个二元一次方程有无数个解,但它的特殊解是有限个,如一个二元一次方程的正整数解,非负整数解都是有限个.求不定方程的正(非负)整数解时,往往借助不等式,整数的奇偶性等相关知识来帮助求解.解:将方程变形为2y=17-3x即2317xy∵y>0∴2317x>0∴x<317即x<325又∵y为正整数(即2317x为整数)∴17-3x为偶数∴x必为奇数∴x=1,3,5当x=1时,7213172317xy当x=3时,4233172317xy当x=5时,1253172317xy故原方程的正整数解为x=1y=7或x=3y=4或x=5y=1【变式题组】01.求下列各方程的正整数解:⑴2x+y=10(2)3x+4y=2102.有10个苹果,要分给两个女孩和一个男孩,要求苹果不得切开,且两个女孩所得的苹果数相等,每个孩子都有苹果吃,问有哪几种分法?【例2】足球联赛得分规定如下:胜1场得3分,平1场得1分,负1场得0分•某队在足球联赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?【解法指导】本题中,所有的等量关系只有两个,而未知量有三个•因而所列方程的个数少于未知数的个数,即为不定方程组,但每个未知数量的数目必为非负整数•因此,此题的实质就是滶不定方程的非负整数解的问题.此方程组有两个方和,三个未知数,解法仍然是消元,即消去某一个未知数后,变为二元一次方程,再仿照例1的解法施行.解:设该队胜了x场,平了y场,负了z场,依题意可得:x+y=4①3x+y=6②②-①得:2x-z=2③变形得:z=2x-2∵0≤z≤2∴0≤2x-2≤2即1≤x≤2又x为正整数∴x=1,2相应地,y=3,0z=0,2答:这个队胜了1场,平了3场,或胜了2,负了2场.【变式题组】01.(佳木斯)为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么可能购买甲种笔().A.11支B.9支C.7支D.5支02.一旅游团50人到一旅舍住宿,旅舍的客户有三人间、二人间、单人间三种•其中三人间的客房每人每晚20元,二人间的客房每人每晚30元,单人间的客房每人每晚50元.(1)若旅游团共住满了20间客房,问三种客房各住了几间?怎样住消费最低?(2)若该旅游团中,夫妻住二人间,单身住三人间,小孩随父母住在一起,现已知有小孩4人(每对夫妻最多只带1个小孩),单身30人,其中男性17人,有两名单身心脏病患者要求住单人间,问这一行人共需多少间客房?【例3】已知:关于x、y的方程组x-y=a+32x+y=5a若x>y,求a的取值范围.【解法指导】解本题的指导思想就是构建以a为未知数的不等式•解之即得a的取值范围,构建不等式的依据就是x>y,而解方程组即可用a的代数式分别表示x和y,进而可得不等式.解:解方程组x-y=a+32x+y=5a得x=2a+1y=a-2∵x>y∴2a+1>a-2解得a>-3故a的取值范围是a>-3.【变式题组】01.已知:关于x的方程3x-(2a-3)=5x+(3a+6)的解是负数,则a的取值范围是_____.02.已知:关于x、y的方程组x+y=3a+9x-y=5a+1的解为非负数.(1)求a的取值范围;(2)化简|4a+5|-|a-4|.03.当m为何值时,关于x的方程2153166mxmx的解大于1?4.已知方程组2x+y=5m+6x-2y=-17的解x、y都是正数,且x的值小于y的值,求m的取值范围.【例4】(凉州)若不等式x-a>2b-2x>0的解集是-1<x<1,求(a+b)2009的值.【解法指导】解此不等式组得a+2<x<2b,而依题意,该不等式的解集又是-1<x<1,而解集是唯一的,因此两解集的边界点分别“吻合”,从而得两等式即得方程组,解之可得a、b之值.解:解不等式组x-a>2a-2x>0得a+2<x<2b又∵此不等式组的解集是-1<x<1∴a+2=-12b=1a解设a=-3ab=2a∴(a+b)2009=(-1)2009=-1【变式题组】01.若2a+x>a2-3x>a的解集为-1<x<2,则a=___________,b=_____________.02.已知:关于x的不等式组x-a≥b2x-a<2b+1的解集为3≤x<5,则ab的值为()A.-2B.21C.-4D.4103.若关于x的不等式组34x>12xx+a>0b的解集为x<2,则a的取值范围是___________.04.已知:不等式组x+2>a+bx-1<a-b的解庥为-1<x<2,求(a+b)2008的值.【例5】(永春)商场正在销售“福娃”玩具和徽章两种奥运商品,已知购买1盒“福娃”玩具和2盒徽章共需145元;购买2盒“福娃”玩具和3盒徽章共需280元•(1)一盒“福娃”玩具和一盒徽章的价格各是多少元?(2)某公司准备购买这两种奥运商品共20盒送给幼儿园(要求每种商品都要购买),且购买金额不能超过450元,请你帮该公司设计购买方案•【解法指导】本题属材料选择类的方程与不等式结合的实际应用题,但方程组与不等式组是分开的•分析可知:第(1)问只需依照题目主干所提供的两个等量关系即可列出二元一次方程组•第(2)问由题目所给不等关系“购买金额不能超过450元”及第(1)问所求出的数据列出不等式,从而求解•解:(1)设一盒“福娃”玩具和一盒徽章的价格分别为x元和y元.依题意,得x+2y=142x+3y=280解得x=125y=10答:一盒“福娃”玩具和一盒徽章的价格分别是125元和10元.(2)设购买“福娃”玩具m盒,则购买徽章(20-m)盒.由题意,得125m+10(20-m)≤450,解得m≤2.17.所以m可以取1,2.答:该公司有两种购买方案.方案一:购买“福娃”玩具1盒,徽章19盒;方案二:购买“福娃”玩具2盒,徽章18盆.【变式题组】01.(益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.02.(眉山)渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.⑴若购买这批鱼苗共用了2600元,求甲、乙两种鱼苗各购买了多少尾?⑵若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?⑶若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?03.(盐城)整顿药品市场,降低药品价格是国家的惠民政策之一.根据国家的《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%根据相关信息解决下列问题:⑴降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?⑵降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%对、乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?【例6】认真阅读下面三个人的对话.小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱入).售货员:本来你用10元钱买一盒饼干是多余的,但再买一袋牛奶就不够了.不过今天是儿童节,我给你买的饼干打九折,两样东西请拿好,还有找你的8角钱.旁边者:一盒饼干的标价可是整数哦!根据对话内容,试求出饼干和牛奶的标价各是多少?【解法指导】本题的条件蕴藏在对话中,应学会从对话中获取信息,“用10元钱买一盒饼干是多余的”,说明一盒饼干的售价小于10元,此不等关系之一;“但再买一袋牛奶就不够了”,说明一盒饼干和一袋牛奶的价格之和大于10元,此不等关系之二.对话中还包含有一个等量关系,就是用10元钱买上述两样东西剩余0.8元钱,即是说一袋牛奶与一盒饼干的价格之和等于10元减去0.8元,由一个方程和两个不等式结合最终可求出答案.解:设饼干的标价为每盒x元,牛奶的标价为每袋^元.根据题意,得x+y>10①0.9x+y=10-0.8②x<10③由②,得y=9.2-9x将其代入①,得x+9.2-9x>10,解得:x>8.所以综合③可知8<x<10.又因为x为整数,所以x=9,y=9.2-9x=1.1即饼干的标价为每盒9元,牛奶的标价为每袋1.1元.【变式题组】01.某次足球联赛A组共6队,比赛规定采取小组循环赛的形式,取前3名进人决赛,记分方法为胜1场得2分,负1场扣1分,平1场不得分,问该小组共需比赛几场?某队得了7分,则它是几胜几负?能否进人决赛?02.(杭州)宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班学生.由于场地、师资等条件限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%问今年最少可招收“宏志班”学生多少名?03.把一些书分给几个学生,如果每人分3本,那么余8本,如果前面的每个学生分5本,那么最后一个同学分不到3本,这些书有多少本?学生有多少人?【例7】(北京市竞赛题)已知:a、b、c是三个非负数,并且满足3a+2b+c=5,2a+b-3c=1,设m=3a+b-7c,设x为m的最大值,y为m的最小值.求xy的值.【解法指导】要求某一代数式的最大(或最小)值,往往依题意构建一个不等式组:若s≤m≤t,则m的最小值为s,最大值为t.本题思路亦类此,首先利用前两个等式,将c看作已知量,解关于a、b的二元一次方程组,得到用含c的式子表示a、b的形式,代入第三个等式,得到用含c的式子表示m的形式,同时依据a、b、c均为非负数,得到c的范围,代入m与c的关系式,得m的范围,因而x、y可求.解:由条件得:解得:3a+2b=5-c2a+b=1+3ca=7c-3b=7-11c则m=3a+7-7c=3(7c-3)+(7-11c)-7c=3c-2由a≥0,b≥0,c≥0得7c-3≥07-11c≥0c≥0解得,37≤c≤711从而x=-57,y=-111故xy=577.【变式题组】01.若a、b满足3a+5∣b∣=7,S=2a2-3∣b∣,则S的取值范围是.02.已知:x、y、z是三个非负有理数,且满足3x+2y+z=5,x+y-z=2,若S=3x+y-z,则S的取值范围是.演练巩固反馈提高一、填空题01.方程3x+y=10的解有个,其正整数解有个.02.若关于x的不等式(a-1)<a+5和2x<4的解集相同,则a的值为.03.已知:关于x的不等式2x-a≥-3的解集如图所示,则a=.04.已知方程组2x-y=m2y-x=1,若未知数x、y满足尤x+y>0,则m的取值范围是.05.若方程组3x+2y=2k2y-x=3的解满足无x<1且y>0,则整数k的个数是.06.若∣x-1

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功