1.3.1利用导数判断函数的单调性教学设计

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

北京市第十五中学南口学校教材版本:人教B版,选修1-1年级:高二年级文科课题:利用导数判断函数的单调性主讲人:王京启北京市第十五中学南口学校教学目标1.知识与技能2.过程与方法3.情感、态度价值观通过实例探究函数单调性与导数关系的过程,认识导数的工具性及其与实际问题的联系,感受和体会导数在解决函数单调性问题中的作用,培养学生的学习兴趣。借助于函数的图象了解函数的单调性与导数的关系,掌握判断函数单调性的方法及步骤。探索并应用函数的单调性与导数的关系求单调区间。通过问题的探究,体会知识的类比迁移。以已知探求未知,从特殊到一般的数学思想方法。在探索过程中培养学生的观察、分析、概括的能力,渗透数形结合思想、转化思想、分类讨论思想。北京市第十五中学南口学校利用求导的方法判断函数的单调性。教学重点北京市第十五中学南口学校1、理解导数在给定区间上的符号与函数增减性的关系;2、提高灵活应用导数法解决有关函数单调性问题的能力。教学难点北京市第十五中学南口学校复习:判断函数的单调性有哪些方法?定义法图像法性质法北京市第十五中学南口学校一般地,设函数𝒚=𝒇(𝒙)的定义域为𝑨,区间𝑴⊆𝑨如果取区间𝑴中的任意两个值𝒙𝟏,𝒙𝟐,当改变量∆𝒙=𝒙𝟐-𝒙𝟏0,有∆𝒚=𝒇(𝒙𝟐)-𝒇(𝒙𝟏)0时,就称函数𝒚=𝒇(𝒙)在区间𝑴上是增函数.当改变量∆𝒙=𝒙𝟐-𝒙𝟏0,有∆𝒚=𝒇(𝒙𝟐)-𝒇(𝒙𝟏)0时,就称函数𝒚=𝒇(𝒙)在区间𝑴上是减函数.𝒙𝒚𝑶𝒙𝟏𝒙𝟐𝒇(𝒙𝟏)𝒇(𝒙𝟐)𝒚=𝒇(𝒙)𝑨𝑩𝒙𝒚𝑶𝒙𝟏𝒙𝟐𝒇(𝒙𝟏)𝒇(𝒙𝟐)𝒚=𝒇(𝒙)𝑨𝑩北京市第十五中学南口学校例如thOthOthO用固定的速度向如图形状的瓶子中注水,则水面高度h与注水时间t之间的关系是()(A)(B)(C)(D)hthO北京市第十五中学南口学校练习那么瓶子是以下几种情况,它们的图像什么样?thOthOthO(A)(B)(C)(D)thOthO(E)北京市第十五中学南口学校例1如图1,设有圆C和定点O,当𝒍从𝒍𝟎开始在平面上绕O匀速旋转(旋转角度不超过𝟗𝟎𝒐)时,它扫过的圆内阴影部分的面积S是时间𝒕的函数,它的图像大致是哪一种?O𝑙𝑙0.C(1)𝑡𝑠𝑂(𝐷)𝑡𝑠𝑂(𝐴)𝑡𝑠𝑂(𝐵)𝑡𝑠𝑂(𝐶)(D)北京市第十五中学南口学校观察下列函数图像,说出下列函数的单调区间。𝑥𝑦𝑂𝑥𝑦𝑂𝑥𝑦𝑂1(1)𝒚=𝟐𝒙(2)𝒚=−𝟐𝒙+𝟏(3)𝒚=𝒙𝟐−𝟐𝒙(1)𝒚′=𝟐(2)𝒚′=−𝟐(3)𝒚′=𝟐𝒙−𝟐=𝟐(𝒙−𝟏)00北京市第十五中学南口学校增减𝒉𝒕=−𝟒.𝟗𝒕𝟐+𝟔.𝟓𝒕+𝟏𝟎𝒗𝒕=𝒉′𝒕=−𝟗.𝟖𝒕+6.5北京市第十五中学南口学校用函数的导数判断函数单调性的法则:函数𝒚=𝒇(𝒙)在某个区间(𝒂,𝒃)内,若𝒇′𝒙𝟎,则𝒇(𝒙)在(𝒂,𝒃)上是增函数,(𝒂,𝒃)为函数𝒇(𝒙)的单调增区间;若𝒇′𝒙𝟎,则𝒇(𝒙)在(𝒂,𝒃)上是减函数,(𝒂,𝒃)为函数𝒇(𝒙)的单调减区间;北京市第十五中学南口学校瞬时速度𝒉‘𝒕𝟎(或𝟎)导函数𝒇‘𝒙𝟎(或𝟎)在区间𝒂,𝒃内函数𝒉=𝒉𝒕是增函数(或减函数)函数𝒚=𝒇𝒙是增函数(或减函数)斜率(倾斜角)k𝟎(或𝟎)函数𝒚=𝒇𝒙是增函数(或减函数)北京市第十五中学南口学校例题应用:例3.判断下列函数的单调性,并求出单调区间:(𝟏)𝒚=𝒙𝟐−𝟐𝒙+𝟒(2)𝒇𝒙=𝒙𝟑−𝟐𝒙𝟐+𝒙−𝟏解题步骤:北京市第十五中学南口学校深化练习:求函数𝒇𝒙=𝟏𝒙+𝟏的单调区间。解题步骤:第一步:求定义域北京市第十五中学南口学校课堂小结:1.函数的单调性与其导函数正负的关系:2.用导数求函数单调区间的一般步骤:3.思想方法:北京市第十五中学南口学校分层作业:必做题:课本第27页练习A第1,2题,练习B第2题;选做题:判断函数𝑦=𝑎𝑥𝑥2−1(𝑎≠0)在区间(-1,1)上的单调性.

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功