5.3.3平行线的判定与性质综合运用(习题课)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

平行线的判定与性质的综合运用两直线平行{1.同位角相等2.内错角相等3.同旁内角互补性质判定1.由_________得到___________的结论是平行线的判定;请注意:2.由____________得到______________的结论是平行线的性质.用途:用途:角的关系两直线平行说明直线平行两直线平行角相等或互补说明角相等或互补综合应用:ABCDEF1231、填空:(1)、∵∠A=____,(已知)AC∥ED,(_____________________)(2)、∵AB∥______,(已知)∠2=∠4,(______________________)45(3)、___∥___,(已知)∠B=∠3.(______________________)∠4同位角相等,两直线平行。DF两直线平行,内错角相等。ABDF两直线平行,同位角相等.判定性质性质∴∴∴∵例1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.AEDFBC解:∵AD//BC(已知)∴∠A=∠ABF(两直线平行,内错角相等)又∵∠A=∠C(已知)∴∠ABF=∠C(等量代换)∴AB∥DC(同位角相等,两直线平行)练习1:如图所示:AD∥BC,∠A=∠C,试说明AB∥DC.AD∥BC.AB∥DC,解:∵AB//DC(已知)∴∠C=∠ABF(两直线平行,同位角相等)又∵∠A=∠C(已知)∴∠ABF=∠A(等量代换)∴AD∥BC(内错角相等,两直线平行)AEDFBC解:∴∠BAD=∠ADC(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠E=∠F(两直线平行,内错角相等)∵AB∥CD(已知)∴AF∥DE(内错角相等,两直线平行)∴∠3=∠4(等式的性质)例2:如图,已知AB∥CD,∠1=∠2,求证∠E=∠F.F1EDBA2C34练习2:如图,已知∠E=∠F,∠1=∠2,求证AB∥CD.F1EDBA2C34解:∴∠2=∠3(等量代换)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴DF∥AC(内错角相等,两直线平行)例3:如图,点E为DF上的点,点B为AC上的点,∠1=∠2,∠C=∠D,求证:DF∥AC321DEFABC∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴BD∥CE(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)解:又∵∠C=∠D(已知)∴∠D=∠ABD(两直线平行,内错角相等)∴BD∥CE(同位角相等,两直线平行)练习3:如图,已知∠A=∠F,∠C=∠D,求证:BD//CE.321DEFABC∴∠C=∠ABD(等量代换)∵∠A=∠F(已知)∴DF∥AC(内错角相等,两直线平行)练习:已知AB∥CD,GP,HQ分别平分∠EGB,∠EHD,判断GP与HQ是否平行?BACDFEHGPQ练习:如图,已知∠E=∠F,∠1=∠2,求证AB∥CD.F1EDBA2C34

1 / 11
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功