温度传感器论文徐彬杰(四川大学物理学院学号:1142021030)摘要:温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量。测温传感器就是将温度信息转换成易于传递和处理的电信号的传感器。传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。本文主要论述了通过使用DH-SJ5温度传感器实验装置探究几种不同类型的温度传感器的原理和温度特性。本文主要讨论了DH-SJ5通过使用DH-SJ5温度传感器实验装置探索一些不同类型的温度传感器原理及温度特性。关键词:温度传感器,DH-SJ5恒温装置,九孔板一、温度传感器概述温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。在半导体技术的支持下,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。二、温度传感器的类型2.1电阻式传感器热电阻式传感器是利用导电物体的电阻率随温度而变化的效应制成的传感器。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。它分为金属热电阻和半导体热电阻两大类。金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。半导体热敏电阻的阻值和温度关系为tBtAeR式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。常用的热电阻有铂热电阻、热敏电阻和铜热电阻。其中铂电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化而变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。用铂的此种物理特性制成的传感器称为铂电阻温度传感器,利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃,TCR=(R100-R0)/(R0×100),R0为0℃的阻值,R100为100℃的阻值,按IEC751国际标准,温度系数TCR=0.003851,Pt100(R0=100Ω)、Pt1000(R0=1000Ω)为统一设计型铂电阻。铂热电阻的特点是物理化学性能稳定。尤其是耐氧化能力强、测量精度高、应用温度范围广,有很好的重现性,是中低温区(-200℃~650℃)最常用的一种温度检测器。热敏电阻(ThermallySensitiveResistor,简称为Thermistor),是对温度敏感的电阻的总称,是一种电阻元件,即电阻值随温度变化的电阻。一般分为两种基本类型:负温度系数热敏电阻NTC(NegativeTemperatureCoefficient)和正温度系数热敏电阻PTC(PositiveTemperatureCoefficient)。NTC热敏电阻表现为随温度的上升,其电阻值下降;而PTC热敏电阻正好相反。NTC热敏热电阻大多数是由Mn(锰)、Ni(镍)、Co(钴)、Fe(铁)、Cu(铜)等金属的氧化物经过烧结而成的半导体材料制成。因此,不能在太高的温度场合下使用。不竟然,其使用范围有的也可以达到了-200℃~700℃,但一般的情况下,其通常的使用范围在-100℃~300℃。NTC热敏热电阻热响应时间一般跟封装形式、阻值、材料常数(热敏指数)、热时间常数有关。材料常数(热敏指数)B值反映了两个温度之间的电阻变化,热敏电阻的特性就是由它的大小决定的,B值(K)被定义为:2121212111lglg3026.211lnlnTTRRTTRRB;RT1:温度T1(K)时的零功率电阻值;RT2:温度T2(K)时的零功率电阻值;T1,T2:两个被指定的温度(K)。对于常用的NTC热敏电阻,B值范围一般在2000K~6000K之间。热时间常数是指在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的63.2%时所需的时间。热时间常数与NTC热敏电阻的热容量成正比,与其耗散系数成反比。这两种热敏电阻均具有特定的特点和优点,以应用于不同的领域。而铜(Cu50)热电阻测温范围小,在-50~150℃范围内,稳定性好,便宜;但体积大,机械强度较低。铜电阻在测温范围内电阻值和温度呈线性关系,温度线数大,适用于无腐蚀介质,超过150℃易被氧化。通常用于测量精度不高的场合。铜电阻有R0=50Ω和R0=100Ω两种,它们的分度号为Cu50和Cu100。其中Cu50的应用最为广泛。2.2半导体温度传感器PN结半导体温度传感器是利用半导体PN结的温度特性制成的。其工作原理是PN结两端的电压随着温度的升高而减少。PN结温度传感器则具有灵敏度高、线性好、热响应快和体积轻巧等特点,尤其是温度数字化、温度控制以及用微机进行温度实时讯号处理等方面,乃是其它温度传感器所不能比拟的。目前结型温度传感器主要以硅为材料,原因是硅材料易于实现功能化,即将测温单元和恒流、放大等电路组合成一块集成电路。美国Motorola公司在1979年就开始生产测温晶体管及其组件,如今灵敏度高达100mV/℃、分辨率不低于0.1℃的硅集成电路温度传感器。但是以硅为材料的这类温度传感器也不是尽善尽美的,在非线性不超过标准值0.5%的条件下,其工作温度一般为-50℃~150℃,与其它温度传感器相比,测温范围的局限性较大,如果采用不同材料如锑化铟或砷化镓的PN结可以展宽低温区或高温区的测量范围。八十年代中期我国就研制成功SiC为材料的PN结温度传感器,其高温区可延伸到500℃,并荣获国际博览会金奖。2.3晶体温度传感器晶体温度传感器是利用晶体的各向异性,并通过选择适当的切割角度切割而成,这是一种可将温度转换成频率的传感器,这种传感器用于计算机测量时可省去模数转换。因此,适合于计算机测温的应用。2.4非接触型温度传感器非接触型温度传感器是利用物体表面散发出来的光或热来进行测量的。常用的非接触型传感器多数是红外传感器,适合于高速运行物体、带电体、高温及高压物体的温度测量。这种红外测温传感器具有反应速度快、灵敏度高、测量准确、测温范围广泛等特点。2.5热电式传感器1、热电偶测温基本原理将两种不同的金属丝一端熔合起来,如果给它们的连结点和基准点之间提供不同的温度,就会产生电压,即热电势。这种现象叫做塞贝克效应。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图2-1所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的,属有源传感器。它能将温度直接转换成热电势。热电偶是工业上最常用的温度检测元件之一。其优点是:(1)测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。(2)测量范围广。测温范围极宽、从-270℃的极低温度到2600℃的超高温度都可以测量,而且在600℃~2000℃的温图2-1度范围内可以进行精确的测量(600℃以下时,铂电阻的测量精度更高)。某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。(3)构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。(4)测温精度高、准确、可靠、性能稳定、热惯性小。通常用于高温炉的测量和快速测量方面。2、热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下:①组成热电偶的两个热电极的焊接必须牢固。②两个热电极彼此之间应很好地绝缘,以防短路。③补偿导线与热电偶自由端的连接要方便可靠。④保护套管应能保证热电极与有害介质充分隔离。3、热电偶冷端的温度补偿由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。2.6光纤温度传感器光纤温度传感器分为相位调制型光纤温度传感器(灵敏度高)、热辐射光纤温度传感器(可监视一些大型电气设备,如电机、变压器等内部热点的变化情况)和传光型光纤温度传感器(体积小、灵敏度高、工作可靠、易制作)。2.7液压温度传感器这种传感器流体受热会产生膨胀,膨胀程度与所加的热量成正比。在根据液压原理制成的温度传感器中,最普通的就是大家熟悉的水银温度计。2.8智能温度传感器智能温度传感器由于在一个芯片上集成有温度传感器、处理器、存储器、A/D转换器等部件。因此,这类传感器具有判断和信息处理能力,并可对测量值进行各种修正和误差补偿,同时还带有自诊断、自校准功能,可大大提高系统的可靠性,并能和计算机直接联机。三、DH-SJ5温度传感器实验装置概述DH-SJ5型温度传感器实验装置是以分离的温度传感器探头元器件,单个电子元件,以九孔板为实验平台来测量温度的设计性实验装置。该实验装置提供了多种测温方法,自行设计测温电路来测量温度传感器的温度特性。实验配有铂电阻Pt100、热敏电阻(NTC和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等温度传感器。本实验装置采用智能温度控制器控温。具有以下的特点:1、控温精度高、范围广、加热所需的温度可自由设定,采用数字显示。2、使用低电压恒流加热、安全可靠、无污染。加热电流连续可调。3、本仪器提供的是单个分离的温度传感器,形象直观,给实验带来了很大的方便,可对不同传感器的温度特性进行比较,更易于掌握它们的温度特性。4、采用九孔板作为实验平台,提供设计性实验。5、加热炉配有风扇,在做降温实验过程中可采用风扇快速降温。6、整体结构设计新颖,紧凑合理,外型美观大方。主要技术指标1、电源电压:AC220V±10%(50/60HZ)2、工作环境:温度0~40℃,相对湿度<80%的无腐蚀性场合3、控温范围:室温~120℃4、温度控制精度:±0.2℃5、分辩率:0.1℃6、控制方式:先进的PID控制温控仪与恒温炉的连线图3-1Pt100的插头与温控仪上的插座颜色对应得相连接。红→红;黄→黄;蓝→蓝。四、课题研究4.1本课题将进行四个实验,分别研究了热电阻温度传感器(Pt100铂电阻、Cu50铜电阻和热敏电阻(NTC和PTC))的温度特性及其测温原理;研究热电偶的温差电动势;PN结正向压降与温度关系的研究和应用;集成温度传感器(AD590和LM35)的测温原理,及其温度特性。其中本论文着重介绍电阻温度传感器的温度特性。五、实验设计和探究5.11.pt100铂电阻的测温原理金属铂(Pt)的电阻