八年级数学上册角平分线的性质第一课时课件新人教版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

11.3角平分线的性质(1)复习提问1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。oBCA12如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?经过上面的探索,你能得到作已知角的平分线的方法吗?小组内互相交流一下吧!探究1---想一想ABMNC作法:⑴以O为圆心,任意长为半径作弧,交OA于M,交OB于N.⑵分别以M,N为圆心,大于的长为半径作弧,两弧在∠AOB的内部交于点C.⑶作射线OC,射线OC即为所求.12MN0温馨提示:作角平分线是最基本的尺规作图,大家一定要掌握噢!试一试由上面的探究可以得出作已知角的平分线的方法已知:∠AOB.求作:∠AOB的平分线.探究角平分线的性质(1)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?(2)猜想:角的平分线上的点到角的两边的距离相等.证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证的途径,写出证明过程。已知:OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E.求证:PD=PE.AOBPED证一证角平分线的性质角的平分线上的点到角的两边的距离相等。BADOPEC定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。定理的作用:证明线段相等。回味无穷定理(文字语言):角平分线上的点到这个角的两边的距离相等.符号语言:∵∠1=∠2PD⊥OA,PE⊥OB(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.OCB1A2PDE1、如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三边AB、BC、CA的距离相等ABCPMNDEF证明:过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F∵BM为△ABC的角平分线∴PD=PE同理,PE=PF.∴PD=PE=PF即点P到三边AB、BC、CA的距离相等用一用(1)已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.温馨提示:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.BAEDCF用一用(2)活如图:在△ABC中,∠C=90°AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;求证:CF=EBACDEBF分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.现已有一个条件BD=DF(斜边相等),还需要我们找什么条件DC=DE(因为角的平分线的性质)再用HL证明.试试自己写证明。你一定行!A0BMNPC1、如图,OC平分∠AOB,PM⊥OB于点M,PN⊥OA于点N,△POM的面积为6,OM=6,则PN=_______。23、如图,△ABC中,∠C=90°,AC=CB,AD为∠BAC的平分线,DE⊥AB于点E。求证:△DBE的周长等于AB。ABCDE丰收乐园回味无穷定理(文字语言):角平分线上的点到这个角的两边的距离相等.符号语言:∵∠1=∠2PD⊥OA,PE⊥OB(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).用尺规作角的平分线.OCB1A2PDE如图,为了促进当地旅游发展,某地要在三条公路围成的一块平地上修建一个度假村.要使这个度假村到三条公路的距离相等,应在何处修建?思考:要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20000)SO公路铁路

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功