2019最新考研数学模拟试题(含答案)学校:__________姓名:__________班级:__________考号:__________题号一总分得分一、解答题1.试决定22(3)ykx中的k的值,使曲线的拐点处的法线通过原点.解:224(3),12(1)ykxxykx令0y,解得x=±1,代入原曲线方程得y=4k,只要k≠0,可验证(1,4k),(-1,4k)是曲线的拐点.18xky,那么拐点处的法线斜率等于18k,法线方程为18yxk.由于(1,4k),(-1,4k)在此法线上,因此148kk,得22321,321kk(舍去)故12832k.2.求下列函数在0x处的左、右导数,从而证明函数在0x处不可导.(1)03sin,0,0;,0,xxyxxx证明:00()(0)sin(0)limlim1,0xxfxfxfxx300()(0)(0)limlim0,0xxfxfxfxx因(0)(0)ff,故函数在00x处不可导.(2)10,0,0;1e0,0,xxxyxx证明:100()(0)1(0)limlim0,01exxxfxffx100()(0)1(0)limlim1,01exxxfxffx因(0)(0)ff,故函数在00x处不可导.(3)02,1,1.,1,xxyxxx证明:11()(1)11(1)limlim,112xxfxfxfxx211()(1)1(1)limlim2,11xxfxfxfxx因(1)(1)ff,故函数在01x处不可导.3.设()()fxxax,其中a为常数,()x为连续函数,讨论()fx在xa处的可导性.解:()()()()()limlim()()()()()()limlim()xaxaxaxafxfaxaxfaaxaxafxfaaxxfaaxaxa.故当()0a时,()fx在xa处可导,且()0fa当()0a时,()fx在xa处不可导.4.已知()fx在0xx点可导,证明:0000()()lim()()hfxhfxhfxh.证明:000()()limhfxhfxhh000000()()()()limlimhhfxahfxfxhfxhh000()()()().fxfxfx5.求下列函数的导数:⑴3exy;⑵2arctanyx;⑶2+1exy;⑷22(1)ln(1)yxxx;⑸221sinyxx;⑹23cosyax(a为常数);⑺1arccosyx;⑻2(arcsin)2xy;⑼21lnyx;⑽sincosnyxnx;⑾1111xxyxx;⑿1arcsin1xyx;⒀lncosarctan(sinh)yx;⒁222arcsin(022xaxyaxaa为常数).解:⑴33exy;⑵421xyx;⑶2+12+111e2e22121xxyxx;⑷2222122ln(1)(1)(1)121xyxxxxxxx222ln(1)1xxxx;⑸22231122sincos()yxxxxx221212sincosxxxx;⑹3322cos(sin)3yaxaxax233sin2axax;⑺2211()11()yxx221xxx;⑻2112arcsin221()2xyx22arcsin24xx;⑼2211ln2ln21ln1lnxyxxxxx;⑽11sincoscossin(sin)sincos(1)nnnynxxnxxnxnnxnx;⑾2221111()(11)(11)()21212121(11)1;11xxxxxxxxyxxxx⑿211(1)(1)1;(1)11(1)2(1)1211xxyxxxxxxxx⒀211[sinarctan(sinh)]coshtanhcosarctan(sinh)1(sinh)yxxxxx;⒁222222221111(2)22221()xayaxxaxaxaxa.6.36arccos2,3xxyx求3xy.解:22111(6)23361()23xxyxxxx313xy7.求函数11ln21xyx的反函数()xy的导数.解:21[ln(1)ln(1)]2d1111()d2111yxxyxxxx故反函数的导数为:2d11dddxxyyx.8.设()ln(1)fxx,求()().nfx解:()1(1)!(ln)(1)nnnnxx()()1(1)!()[ln(1)](1)(1)nnnnnfxxx.9.求曲线y=lnx在与x轴交点处的曲率圆方程.解:由ln0yxy解得交点为(1,0).1112111,11.xxxxyxyx故曲率中心212(1,0)(1)312xyyxyyyy曲率半径为8R.故曲率圆方程为:22(3)(2)8xy.10.求下列极限问题中,能使用洛必达法则的有().⑴201sinlimsinxxxx;⑵lim(1)xxkx;⑶sinlimsinxxxxx;⑷eelim.eexxxxx解:⑴∵200111sin2sincoslimlimsincosxxxxxxxxx不存在,(因1sinx,1cosx为有界函数)又2001sin1limlimsin0sinxxxxxxx,故不能使用洛必达法则.⑶∵sin1coslimlimsin1cosxxxxxxxx不存在,而sin1sinlimlim1.sinsin1xxxxxxxxxx故不能使用洛必达法则.⑷∵eeeeeelimlimlimeeeeeexxxxxxxxxxxxxxx利用洛必达法则无法求得其极限.而22ee1elimlim1ee1exxxxxxxx.故答案选(2).11.研究下列函数的连续性,并画出图形:2,1,,01,(1)()(2)()1,1;2,12;xxxxfxfxxxx221(3)()lim;(4)()lim.1xxnxxnnnnnxfxfxxnnx解:(1)由初等函数的连续性知,()fx在(0,1),(1,2)内连续,又21111lim()lim(2)1,lim()lim1xxxxfxxfxx1lim()1,xfx而(1)1f,()fx在1x处连续,又,由200lim()lim0(0)xxfxxf,知()fx在0x处右连续,综上所述,函数()fx在[0,2)内连续.函数图形如下:图1-2(2)由初等函数的连续性知()fx在(,1),(1,1),(1,)内连续,又由1111lim()lim11,lim()lim1,xxxxfxfxx知1lim()xfx不存在,于是()fx在1x处不连续.又由1111lim()lim1,lim()lim11,xxxxfxxfx及(1)1f知1lim()(1)xfxf,从而()fx在x=1处连续,综上所述,函数()fx在(,1)及(1,)内连续,在1x处间断.函数图形如下:图1-3(3)∵当x0时,221()limlim1,1xxxxxxnnnnnfxnnn当x=0时,0000()lim0,nnnfxnn当x0时,2222111()limlimlim1111xxxxxxxnnnxnnnnfxnnnn1,0,()lim0,0,1,0.xxxxnxnnfxxnnx由初等函数的连续性知()fx在(,0),(0,)内连续,又由0000lim()lim11,lim()lim(1)1xxxxfxfx知0lim()xfx不存在,从而()fx在0x处间断.综上所述,函数()fx在(,0),(0,)内连续,在0x处间断.图形如下:图1-4(4)当|x|=1时,221()lim0,1nnnxfxxx当|x|1时,221()lim,1nnnxfxxxx当|x|1时,2222111()limlim111nnnnnnxxfxxxxxx即,1,()0,1,,1.xxfxxxx由初等函数的连续性知()fx在(-∞,-1),(-1,1),(1,+∞)内均连续,又由1111lim()lim()1,lim()lim1xxxxfxxfxx知1lim()xfx不存在,从而()fx在1x处不连续.又由1111lim()lim()1,lim()lim1xxxxfxxfxx知1lim()xfx不存在,从而()fx在1x处不连续.综上所述,()fx在(-∞,-1),(-1,1),(1,+∞)内连续,在1x处间断.图形如下:图1-512.求下列函数的最大值、最小值:254(1)(),(,0)fxxxx;解:y的定义域为(,0),322(27)0xyx,得唯一驻点x=-3且当(,3]x时,0y,y单调递减;当[3,0)x时,0y,y单调递增,因此x=-3为y的最小值点,最小值为f(-3)=27.又lim()xfx,故f(x)无最大值.(2)()1,[5,1]fxxxx;解:11021yx,在(5,1)上得唯一驻点34x,又53,(1)1,(5)6544yyy,故函数()fx在[-5,1]上的最大值为54,最小值为65.42(3)82,13yxxx.解:函数在(-1,3)中仅有两个驻点x=0及x=2,而y(-1)=-5,y(0)=2,y(2)=-14,y(3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.13.用函数极限定义证明:22222102sin314(1)lim0;(2)lim3;(3)lim4;42141(4)lim2;(5)limsin0.21xxxxxxxxxxxxxxx证:(1)0,要使1sinsin0xxxxx,只须1x,取1X,则当xX时,必有sin0xx,故sinlim0xxx.(2)0,要使22221313313||44xxxx,只须13x,取13X,则当Xx时,必有223134xx,故2231lim34xxx.(3)0,要使24(4)22xxx,只要取,则当02x时,必有24(4)2xx