上海市嘉定区2018-2019学年九年级(二模)第二次质量调研数学试卷--解析版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2019年上海市嘉定区中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为()A.324×105B.32.4×106C.3.24×107D.0.32×1082.(4分)如果关于x的方程x﹣m+2=0(m为常数)的解是x=﹣1,那么m的值是()A.m=3B.m=﹣3C.m=1D.m=﹣13.(4分)将抛物线y=x2﹣2x﹣1向上平移1个单位,平移后所得抛物线的表达式是()A.y=x2﹣2xB.y=x2﹣2x﹣2C.y=x2﹣x﹣1D.y=x2﹣3x﹣14.(4分)现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别是S甲2、S乙2,如果S甲2>S乙2,那么两个队中队员的身高较整齐的是()A.甲队B.乙队C.两队一样整齐D.不能确定5.(4分)已知,而且和的方向相反,那么下列结论中正确的是()A.B.C.D.6.(4分)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:a6÷a3=.8.(4分)分解因式:2a2﹣4a=.9.(4分)已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.10.(4分)不等式组的解集是.11.(4分)方程=1的根是.12.(4分)已知反比例函数的图象经过点(2,﹣1),那么k的值是.13.(4分)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.14.(4分)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是分.15.(4分)在Rt△ACB中,∠C=90°,AC=3,BC=3,以点A为圆心作圆A,要使B、C两点中的一点在圆A外,另一点在圆A内,那么圆A的半径长r的取值范围是.16.(4分)如图,平行四边形ABCD的对角线AC、BD交于点O,过点O的线段EF与AD、BC分别交于点E、F,如果AB=4,BC=5,OE=,那么四边形EFCD的周长为.17.(4分)各顶点都在方格纸横竖格子线的交错点上的多边形称为格点多边形,奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S=a+b﹣1,其中a表示多边表内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图格点多边形的面积是.18.(4分)如图,点M的坐标为(3,2),点P从原点O出发,以每秒1个单位的速度沿y轴向上移动,同时过点P的直线l也随之上下平移,且直线l与直线y=﹣x平行,如果点M关于直线l的对称点落在坐标轴上,如果点P的移动时间为t秒,那么t的值可以是.三、解答题(本大题共7题,满分78分)19.(10分)计算:(﹣2018)0+()﹣2﹣+.20.(10分)解方程:=﹣.21.(10分)如图已知:△ABC中,AD是边BC上的高、E是边AC的中点,BC=11,AD=12,DFGH为边长为4的正方形,其中点F、G、H分别在AD、AB、BC上.(1)求BD的长度;(2)求cos∠EDC的值.22.(10分)某乒乓球馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元;暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设打乒乓x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请根据函数图象,写出选择哪种消费方式更合算.23.(12分)如图,在矩形ABCD中,点E是边AB的中点,△EBC沿直线EC翻折,使B点落在矩形ABCD内部的点P处,联结AP并延长AP交CD于点F,联结BP交CE于点Q.(1)求证:四边形AECF是平行四边形;(2)如果PA=PE,求证:△APB≌△EPC.24.(12分)在平面直角坐标系xOy中,如图,抛物线y=mx2﹣2x+n(m、n是常数)经过点A(﹣2,3)、B(﹣3,0),与y轴的交点为点C.(1)求此抛物线的表达式;(2)点D为y轴上一点,如果直线BD和直线BC的夹角为15°,求线段CD的长度;(3)设点P为此抛物线的对称轴上的一个动点,当△BPC为直角三角形时,求点P的坐标.25.(14分)在圆O中,AB是圆O的直径,AB=10,点C是圆O上一点(与点A、B不重合),点M是弦BC的中点.(1)如图1,如果AM交OC于点E,求OE:CE的值;(2)如图2,如果AM⊥OC于点E,求sin∠ABC的值;(3)如图3,如果AB:BC=5:4,点D为弦BC上一动点,过点D作DF⊥OC,交半径OC于点H,与射线BO交于圆内点F.探究一:如果设BD=x,FO=y,求y关于x的函数解析式及其定义域;探究二:如果以点O为圆心,OF为半径的圆经过点D,直接写出此时BD的长度;请你完成上述两个探究.2019年上海市嘉定区中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.(4分)拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为()A.324×105B.32.4×106C.3.24×107D.0.32×108【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:32400000=3.24×107元.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.2.(4分)如果关于x的方程x﹣m+2=0(m为常数)的解是x=﹣1,那么m的值是()A.m=3B.m=﹣3C.m=1D.m=﹣1【分析】理解一元一次的解和解一元一次方程的概念是解此题的关键.【解答】解:把x=﹣1,代入方程关于x的方程x﹣m+2=0(m为常数)得:﹣1﹣m+2=0,解得:m=1,故选:C.【点评】本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.3.(4分)将抛物线y=x2﹣2x﹣1向上平移1个单位,平移后所得抛物线的表达式是()A.y=x2﹣2xB.y=x2﹣2x﹣2C.y=x2﹣x﹣1D.y=x2﹣3x﹣1【分析】根据向上平移纵坐标加求得结论即可.【解答】解:∵将抛物线y=x2﹣2x﹣1向上平移1个单位,∴平移后抛物线的表达式y=x2﹣2x﹣1+1,即y=x2﹣2x.故选:A.【点评】本题考查了二次函数图象与几何变换,此类题目利用顶点的平移确定抛物线函数图象的变化更简便.4.(4分)现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别是S甲2、S乙2,如果S甲2>S乙2,那么两个队中队员的身高较整齐的是()A.甲队B.乙队C.两队一样整齐D.不能确定【分析】根据方差的意义,方差越小数据越稳定,故比较方差后可以作出判断.【解答】解:∵S甲2>S乙2,∴两个队中队员的身高较整齐的是:乙队.故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(4分)已知,而且和的方向相反,那么下列结论中正确的是()A.B.C.D.【分析】根据平面向量的性质即可解决问题.【解答】解:∵,而且和的方向相反,∴=﹣3,故选:D.【点评】本题考查平面向量的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(4分)对于一个正多边形,下列四个命题中,错误的是()A.正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.正多边形是中心对称图形,正多边形的中心是它的对称中心C.正多边形每一个外角都等于正多边形的中心角D.正多边形每一个内角都与正多边形的中心角互补【分析】利用正多边形的对称轴的性质、对称性、中心角的定义及中心角的性质作出判断即可.【解答】解:A、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项错误;B、正奇数多边形多边形不是中心对称图形,错误,故本选项正确;C、正多边形每一个外角都等于正多边形的中心角,正确,故本选项错误;D、正多边形每一个内角都与正多边形的中心角互补,正确,故本选项错误.故选:B.【点评】本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:a6÷a3=a3.【分析】根据同底数幂相除,底数不变指数相减计算即可.【解答】解:a6÷a3=a6﹣3=a3.故应填a3.【点评】本题主要考查同底数幂的除法运算性质,熟练掌握运算性质是解题的关键.8.(4分)分解因式:2a2﹣4a=2a(a﹣2).【分析】观察原式,找到公因式2a,提出即可得出答案.【解答】解:2a2﹣4a=2a(a﹣2).故答案为:2a(a﹣2).【点评】本题考查了因式分解的基本方法一﹣﹣﹣提公因式法.本题只要将原式的公因式2a提出即可.9.(4分)已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为﹣.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系是解答此题的关键.10.(4分)不等式组的解集是﹣1≤x<2.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2.故答案为﹣1≤x<2.【点评】此题考查了一元一次不等式组的解法,不等式组取解集的方法为:同大取大;同小取小;大小小大去中间;大大小小无解.11.(4分)方程=1的根是1.【分析】本题思路是两边平方后去根号,解方程.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.【点评】平方时可能产生增根,要验根.12.(4分)已知反比例函数的图象经过点(2,﹣1),那么k的值是k=﹣.【分析】根据点的坐标与函数解析式的关系,将点的坐标代入,可以得到﹣1=,然后解方程,便可以得到k的值.【解答】解:∵反比例函数的图象经过点(2,﹣1),∴﹣1=∴;故填.【点评】本题侧重考查利用待定系数法求函数的解析式的方法,可以结合代入法进行解答13.(4分)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【分析】用红色小球的个数除以球的总个数即可得.【解答】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.14.(4分)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是95分.【分析】根据众数的定义即众数是一组数据中出现次数最多的数据,即可得出答案.

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功