高中物理牛顿运动定律知识点含几种典型例题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

牛顿运动定律的综合应用习题典型例题透析类型一、瞬时加速度的分析1、质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,如图所示,当细线被剪断的瞬间。关于两球下落加速度的说法中,正确的是()A、aA=aB=0B、aA=aB=gC、aA>g,aB=0D、aA<g,aB=0解析:分别以A、B两球为研究对象。当细线束剪断前,A球受到竖直向下的重力mAg、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力mBg,竖直向上弹簧的弹力T,如下图。它们都处于力平衡状态,因此满足条件,T=mBgT′=mAg+T=(mA+mB)g细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态。所以,B的加速度aB=0,而A球则在重力和弹簧的弹力作用下,其瞬时加速度为:答案:C举一反三【变式】如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量之比是l∶2∶3,设所有接触面都光滑,当沿水平方向抽出木块C的瞬间,木块A和B的加速度分别是aA=,aB=。解析:在抽出木块C前,弹簧的弹力F=mAg。抽出木块C瞬间,弹簧弹力不变,所以,A所受合力仍为零,故aA=0。木块B所受合力FB=mBg+F=,所以。答案:类型二、力、加速度、速度的关系2、如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的?(按论述题要求解答)解析:因为速度变大或变小取决于速度方向与加速度方向的关系(当a与v同向时v变大,当a与v反向时v变小),而加速度由合力决定,所以此题要分析v、a的大小变化,必须要分析小球受到的合力的变化。小球接触弹簧时受两个力作用:向下的重力和向上的弹力(其中重力为恒力)。在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小(因为F合=mg-kx,而x增大),因而加速度减少(a=F合/m),由于a与v同向,因此速度继续变大。当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大。之后,小球由于惯性仍向下运动,但弹力大于重力,合力向上且逐渐变大(F合=kx-mg)因而加速度向上且变大,因此速度减小至零。(注意:小球不会静止在最低点,将被弹簧上推向上运动,请同学们自己分析以后的运动情况).综上分析得:小球向下压弹簧过程,F方向先向下后向上,大小先变小后变大;a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小。(向上推的过程也是先加速后减速)。举一反三【变式】如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点,今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是:()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C速度不变C.物体从A到B先加速后减速,从B到C一直减速运动D.物体在B点受合外力为零解析:物体从A到B的过程中水平方向一直受到向左的滑动摩擦力Ff=μmg大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为零,开始时,弹力大于摩擦力,合力向右,物体向右加速,随着弹力的减小,合力越来越小;到A、B间的某一位置时,弹力和摩擦力大小相等,方向相反,合力为零,速度达到最大;随后,摩擦力大于弹力,合力增大但方向向左,合力方向与速度方向相反,物体开始做减速运动,所以小物块由A到B的过程中,先做加速度减小的加速运动,后做加速度增大的减速运动。从B到C一直减速运动。答案:C类型三、整体法和隔离法分析连接体问题3、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面下滑,稳定时弹簧秤示数为F2,测得斜面倾角为θ,由以上数据算出木板与斜面间的动摩擦因数。(只能用题中给出的已知量表示)解析:把木板、小球、弹簧看成一个整体,应用整体法。木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。设,它们的加速度为a,则可得:(m球+m木)gsinθ-μ(m球+m木)gcosθ=(m球+m木)a可得:a=gsinθ-μgcosθ①隔离小球,对小球应用隔离法,对小球受力分析有:mgsinθ-F2=ma②而:mgsinθ=F1③由①②得:F2=μmgcosθ④由③④得tanθ举一反三【变式】如图示,两个质量均为m的完全相同的物块,中间用绳连接,若绳能够承受的最大拉力为T,现将两物块放在光滑水平面上,用拉力F1拉一物块时,恰好能将连接绳拉断;倘若把两物块放在粗糙水平面上,用拉力F2拉一物块时(设拉力大于摩擦力),也恰好将连接绳拉断,比较F1、F2的大小可知()。A、F1>F2B、F1<F2C、F1=F2D、无法确定解析:(1)当放置在光滑水平面上时。由于两物体的加速度相同,可以把它们看成一个整体,对此应用整体法。由F=ma可知,两物体的整体加速度。在求绳子张力时,必须把物体隔离(否则,绳子张力就是系统内力),应用隔离法。隔离后一物体,则绳子的张力:。(2)当放置在粗糙水平面上时,同样应用整体法与隔离法。设每个物块到的滑动摩擦力为F′,则整体加速度。隔离后一个物体,则绳子的张力可见这种情况下,外力都等于绳子的最大张力T的两倍,故选项C正确。答案:C。类型四、程序法解题4、如图所示,一根轻质弹簧上端固定,下挂一质量为m0的平盘,盘中有物体质量为m,当盘静止时,弹簧伸长了l,现向下拉盘使弹簧再伸长Δl后停止,然后松手放开,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于:A、(1+B、(1+)mgC、D、解析:题目描述主要有两个状态:(1)未用手拉时盘处于静止状态;(2)松手时盘处于向上加速状态,对于这两个状态,分析即可:当弹簧伸长l静止时,对整体有①当刚松手时,对整体有:对m有:F-mg=ma③对①、②、③解得:答案:B类型五、临界问题的分析与求解5、如图所示,斜面是光滑的,一个质量是0.2kg的小球用细绳吊在倾角为53°的斜面顶端。斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力。思路点拨:斜面由静止向右加速运动过程中,当a较小时,小球受到三个力作用,此时细绳平行于斜面;当a增大时,斜面对小球的支持力将会减少,当a增大到某一值时,斜面对小球的支持力为零;若a继续增大,小球将会“飞离”斜面,此时绳与水平方向的夹角将会大于θ角。而题中给出的斜面向右的加速度,到底属于上述哪一种情况,必须先假定小球能够脱离斜面,然后求出小球刚刚脱离斜面的临界加速度才能断定。解析:处于临界状态时小球受力如图示:则有:mgcotθ=ma0解得:a0=gcotθ=7.5m/s2∵a=8m/s2>a0∴小球在此时已经离开斜面∴绳子的拉力斜面对小球的弹力:N=0举一反三【变式】一个弹簧放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量M=10.5kg,Q的质量m=1.5kg,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如下图所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s以后,F为恒力,求:力F的最大值与最小值。(取g=l0m/s2)解析:(1)P做匀加速运动,它受到的合外力一定是恒力。P受到的合外力共有3个:重力、向上的力F及对Q对P的支持力FN,其中重力Mg为恒力,FN为变力,题目说0.2s以后F为恒力,说明t=0.2s的时刻,正是P与Q开始脱离接触的时刻,即临界点。(2)t=0.2s的时刻,是Q对P的作用力FN恰好为零的时刻,此时刻P与Q具有相同的速度及加速度。因此,此时刻弹簧并未恢复原长,也不能认为此时刻弹簧的弹力为零。(3)当t=0时刻,应是力F最小的时刻,此时刻F小=(M+m)a(a为它们的加速度)。随后,由于弹簧弹力逐渐变小,而P与Q受到的合力保持不变,因此,力F逐渐变大,至t=0.2s时刻,F增至最大,此时刻F大=M(g+a)。以上三点中第(2)点是解决此问题的关键所在,只有明确了P与Q脱离接触的瞬间情况,才能确定这0.2s时间内物体的位移,从而求出加速度a,其余问题也就迎刃而解了。解:设开始时弹簧压缩量为x1,t=0.2s时弹簧的压缩量为x2,物体P的加速度为a,则有:kx1=(M+m)g①kx2-mg=ma②x1-x2=③由①式得:解②③式得:a=6m/s2力F的最小值:F小=(M+m)a=72N力F的最大值:F大=M(g+a)=168N类型六、利用图象求解动力学与运动学的题目6、放在水平地面上的一物块,受到方向不变的水平推力的作用,F的大小与时间t的关系和物块速度v与时间t的关系,如图甲、乙所示。取重力加速度g=10m/s2。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为()A、m=0.5kg,μ=0.4B、m=1.5kg,μ=C、m=0.5kg,μ=0.2D、m=1kg,μ=0.2解析:由v-t图可知在0~2s静止,2~4s是以初速度为0,加速度a=2m/s2做匀加速运动,4~6s内以v=4m/s做匀速直线运动,结合F-t图像可分析得出:μmg=2N,ma=3N-2N,解得m=0.5kg,μ=0.4。答案:A类型七、用假设法分析物体的受力7、两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如下图所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力()A、等于零B、方向沿斜面向上C、大于等于μ1mgcosθD、大于等于μ2mgcosθ解析:把A、B两滑块作为一个整体,设其下滑加速度为a,由牛顿第二定律:(M+m)gsinθ-μ1(M+m)gcosθ=(M+m)a得a=g(gsinθ-μ1cosθ)由于a<gsinθ,可见B随A一起下滑过程中,必须受到A对它沿斜面向上的摩擦力,设摩擦力为FB(如图所示),由牛顿第二定律:mgsinθ-FB=ma得FB=mgsinθ-ma=mgsinθ-mg(sinθ-μ1cosθ)=μ1mgcosθ答案:B、C总结升华:由于所求的摩擦力是未知力,如果不从加速度大小比较先判定其方向,也可任意假设,若设B受到A对它的摩擦力沿斜面向下,则牛顿第二定律的表达式为:mgsinθ+FB=ma得FB=ma-mgsinθ=mg(sinθ-μ1cosθ)-mgsinθ=-μ1mgcosθ,大小仍为μ1mgcosθ。式中负号表示FB的方向与规定的正方向相反,即沿斜面向上。举一反三【变式】如图所示,传送带与水平面夹角θ=37°,并以v=10m/s的速度运行,在传送带的A端轻轻地放一小物体,若已知传送带与物体之间的动摩擦因数μ=0.5,传送带A到B端的距离s=16m,则小物体从A端运动到B端所需的时间可能是(g=10m/s2)()A、1.8sB、2.0sC、2.1sD、4.0s解析:若传送带顺时针转动,物体受向上的摩擦力,因mgsinθ>μmgcosθ,故物块向下加速运动,a=gsinθ-μgcosθ=2m/s2。由,解得:t=4.0s。即,小物体从A端运动到B端所需的时间为4.0s,所以,D正确。若传送带逆时针转动,物体开始受向下的摩擦力,向下加速运动,a1=gsinθ+μgcosθ=10m/s2,当速度达到l0m/s时,运动位移,所用的时间为,t1=,以后由于下滑力的作用物块又受向上的摩擦力,此时它的加速度为a2=2m/s2,在此加速度下运动的位移s2=s-s1=11m,又由得11=10t2+t22,解得t2=1s。所以,小物体从A端运动到B端所需的时间:t总=t1+t2=2s,B正确。答案:B、D。探究园地3、如图a,质量m=1kg的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功