频率选择表面5.3.1设计背景频率选择表面(FrequencySelectiveSurface,FSS)是一种二维周期性结构,可以有效地控制电磁波的反射与传输。目前FSS的应用十分广泛,可用于反射面天线的负反射器以实现频率复用,提高天线的利用率;也可以用于波极化器、分波数仪和激光器的“腔体镜”,以提高激光器的泵浦功率;还可以用于隐身技术,应用设计的雷达天线罩能够有效地降低雷达系统的雷达散射界面。5.3.2设计原理FSS是一种而为周期排列的阵列结构,本身不能吸收能量,但是却能起到滤波的作用。通常有两种形式,以后总是贴片型,是在介质衬底层上周期性地印上规则的导体贴片单元组成金属阵列;另一种是孔径型,是在很大的金属屏上周期性开孔的周期孔径结构。这两种结构都可以实现对电磁场的频率选择作用和极化选择作用,对于谐振情况下的入射电磁波,这两种阵列分别表现出全反射(单元为导体贴片)、全透射(单元为缝隙、孔径),它们也被分别称为带阻型FSS和带通型FSS。频率选择表面的频率选择特性主要取决于写真单元的形式、单元的排布方式以及周围戒指的电性能。FSS的基本结构如图5-3-1所示,上下层为介质层,中间层为金属层,金属层也可以位于介质层的上下面上。1.基本的偶极子或缝隙形式的频率选择表面FSS的两类基本形式是导线阵列和缝隙阵列,如图5-3-2所示。介质基板PECε1μ1ε2μ2图5-3-1FSS的基本结构如图5-3-2(a)所示的谐振偶极子的阵列作为带阻滤波器,不能通行偶极子谐振频率的波,但可以通行高于和低于谐振频率的波。与之互补的在理想导电片上的缝隙阵列,如图5-3-2(b)所示,用作带通滤波器,可通行等于缝隙谐振频率的波,但拒绝较高和较低频率的波。两种情况的传输系数图如图5-3-3所示。2.其他形式的频率选择表面单元形状各种各样的FSS单元形状都是从最基本的直偶极子单元开始的。现在讲偶极子单元分成四类,分别为:(1)“中心连接”或“N-极子”单元。如偶极子、三极子和耶路撒冷十字等。(2)环形单元。如圆环,矩形环和六角环形等。环单元是制造高质量的斜入射FSS的首选形式。(3)不同形状的贴片。(4)上述图形的组合。偶极子阵入射波Er𝑆̂EiHiHt缝隙阵(a)(b)图5-3-2基本的频率选择表面0频率偶极子阵谐振频率带通带阻缝隙阵图5-3-3两种形式的传输系数图5-3-4给出了四种常用谐振单元,其中图(a)、(c)属于孔径型,图(b)、(d)属于贴片型。规则的FSS单元图形有利于电磁模型的建立,如圆形、矩形单元等。但是有一些图形不能归结为上述的类型,并且往往这些复杂的图形能够提供更好的性能,比如随入射角的变化,可以得到稳定的频率响应,宽带宽和小的带间隔等。一些不规则的图形单元也可以在多频段上工作。这就需要设计者按照工程需求选择所需要的FSS单元形状。必须强调的是,无论贴片型还是孔径型FSS,在实际应用中需要有衬底支撑,介质衬底的性质对FSS特性有很大的影响,单层及多层介质衬底可以改善FSS的特性,因此在实际设计中必须考虑介质效应。5.3.3HFSS软件的仿真实现本例利用HFSS软件设计一个带阻型频率选择表面,FSS的单元结构示意图如图5-3-1所示,仿真模型图如图5-3-5所示,频率选择表面的基本单元位于整个模型的最中间,一个厚度为介质板六倍的空气腔包住基本单元,并设有两组主从边界。选择介电常量εr=2.2的介质作为介质基板,厚度h=10.16mm,边长a=4mm。频率选择表面单元为环形,外半径Rout=3.7471mm,内半径Rin=3.1471mm。通过调整FSS单元贴片的内半径和介质基板的边长,使FSS的谐振频率在10GHz。本例中先介绍了如何在HFSS中实现对FSS的建模,然后对贴片单元尺寸进行优化使其得到要求的谐振频率,最后生成S参数和传输系数的仿真结果。1.创建工程(1)运行HFSS软件后,自动创建一个新工程。在工程列表中自动加入一个新项目,默认名为HFSSDesign1。同时,在工程管理区的右侧出现3D模型窗口。在工程树中选择HFSSDesign1,点击右键,选择Rename选项,将设计命名为FSS。图5-3-4FSS常用谐振单元FSS单元Master1Master2Slave2Slave1(a)仿真模型示意图(b)HFSS仿真模型图5-3-5FSS仿真模型图(2)由主菜单选择File→Saveas,保存在目标文件夹内,命名为FSS。2.设置求解类型有主菜单选HFSS→SolutionType,在弹出的对话框窗口选择DrivenModal项,如图5-3-6所示。3.设置单位有主菜单选择Modeler→Units,在SetModelUnits对话框中选择mm项,如图5-3-7所示。4.创建模型1)绘制介质板(1)在主菜单选择Draw→Box火灾工具栏中点击按钮,绘制一个长方体。(2)在坐标输入栏中输入起始点的坐标:X:-4,Y:-4,Z:-5.08,按回车键结束输入。(3)在坐标输入栏中输入长、宽、高:dX:8,dY:8,dZ:10.16,按回车键结束输入。(4)在属性(Property)窗口中选择Attribute标签页,将Name项改为Substrate,Transparent项改为0.8。(5)点击Material选项后面的按钮,在弹出窗口的Materials标签页下,点击右下角的AddMaterials按钮。在弹出的窗口中,将MaterialName改为Material1,将第一行中的Value的值改为2.2,点击OK按钮确定,在点击确定按钮,如图5-3-8所示。图5-3-6求解类型设置对话框图5-3-7单位设置对话框设置完毕后,按下Ctrl+D键,将介质板适中显示,如图5-3-9所示。2)绘制FSS单元(1)在菜单栏中点击Draw→Circle,绘制一个圆形。(2)在坐标输入栏中输入起始点的坐标:X:0,Y:0,Z:0,按回车键结束输入。(3)在坐标输入栏输入长、宽、高:dX:3.7471,dY:0,dZ:0,按回车键结束输入。(4)在属性(Property)窗口中选择Attribute标签页,将Name项修改为Ring。(5)点击Color后面的Edit按钮,将颜色设置为黑色,点击OK确定,如图5-3-10所示。图5-3-8材料设置对话窗口图5-3-9介质板模型图5-3-10介质板绘制圆形后的模型图(6)选定Substrate,在工具栏上点击,介质板暂时不可见。(7)在菜单栏中点击Draw→Circle,在绘制一个圆形。(8)在坐标输入栏中输入起始点的坐标:X:0,Y:0,Z:0,按回车键结束输入。(9)在坐标输入栏中输入长、宽、高:dX:3.1471,dY:0,dZ:0,按回车键结束输入。(10)在属性(Property)窗口中选择Attribute标签页,将Name项修改为RingOut。如图5-3-11所示。(11)同时选择Ring和RingOut后,在菜单栏中点击Modeler→Boolean→Substract,在Substract窗口作如图5-3-12的设置,点击OK按钮结束设置。在工具栏上点击按钮,勾选Substrate后的复选框选项,得到模型如图5-3-13所示。(12)点击选择圆环Ring,单击右键,在下拉菜单中选择AssignBoundary→PerfectE,将Ring设置为理想导体。3)绘制空气腔(1)点击工具栏中按钮,绘制一个长方体。(2)在坐标输入栏中输入起始点的坐标:X:-4,Y:-4,Z:-31,按回车键结束输入。(3)在坐标输入兰输入长、宽、高:dX:8,dY:8,dZ:62,按回车键结束输入。图5-3-11绘制第二个圆形后的模型图图5-3-12相减操作对话框(4)在属性(Property)窗口中选择Attribute标签页,将Name项修改为Air,Transparent项修改为0.8,如图5-3-14所示。5.设置主从边界主从边界条件可以模拟平面周期结构,这种边界条件强制使从边界上每点的电场与主边界上相应点的电场以一相位差相匹配。与对称边界不同,电场不必与这些边界垂直或相切。只需要满足在两个边界上的场具有相同的振幅和方向(或者相同的幅度和相反的方向)即可。建立匹配的主从边界时,要遵循以下原则:○1主从边界只能定义在平面,可以是2D和3D物体表面;○2一个边界上的几何结构必须与其他边界上的几何结构相匹配。例如,如果主边界是矩形表面,则从边界也必须是同样大小的矩形表面。要建立一个主或从边界表面,必须指定坐标系来说明所选表面所处的平面。当HFSS是两边界匹配时,相应的两个坐标系也必须互相匹配。如果不匹配,HFSS就会对旋转从边界来使之与主边界匹配。这样操作时,定义了从边界的表面也随之旋转。相对于定义的坐标系,两个表面并没有同一位置,就会出现错误信息。以图5-3-15为例。要在坐标系内匹配主边界,相应的从边界就必须逆时针旋转90°;旋转之后,就得到图5-3-16。两个表面不一致时网格就不匹配,就导致了错误信息的出现。而且,定义的U轴和V轴之间的夹角对于主和从边界要一致。UV(a)从边界UV(b)主边界UV图5-3-15HFSS软件中的主从边界的不匹配图5-3-16HFSS软件中主从边界的匹配图5-3-13绘制FSS单元后的模型图图5-3-14绘制空气腔后的模型图1)第一对主从边界的设置(1)在绘图窗口空白处点击右键,选择SelectFaces。(2)点选空气腔上平行于YOZ的任意一个面,点击右键后出现下拉菜单,选择AssignBoundary→Master。(3)在弹出的对话框中,Name项默认为Master1。(4)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。不勾选VVector后的复选框。(5)旋转模型后选择另一个平行面,点击右键后出现下拉菜单,选择AssignBoundary→Slave。(6)弹出对话框,Name项默认为Slave1,Master项选择Master1。(7)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。软件自动勾选了V后的复选框。点击下一步。(8)此处我们设计的是垂直入射情况,ScanAngles都使用默认的0°。点击完成,如图5-3-17所示。2)第二对主从边界的设置(1)点选空气腔上平行于YOZ的任意一个面,点击右键后出现下拉菜单,选择AssignBoundary→Master。(2)在弹出的对话框中,Name项默认为Master2。(3)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。不勾选VVector后的复选框。(4)旋转模型后选择另一个平行面,点击右键后出现下拉菜单,选择AssignBoundary→Slave。(5)弹出对话框,Name项默认为Slave2,Master项选择Master2。(6)CoordinateSystem项下,UVector后的下拉菜单选择NewVector,然后沿介质块在该面上的一条边画一条积分线。软件自动勾选了V后的复选框。点击下一步。(7)点击下一步,点击完成,如图5-3-18所示完成第二对主从边界的设置。6.设置Floquet端口1)上表面Floquet端口的设置Slave1Master1图5-3-17设置第一对主从边界后的效果图Master2Slave2图5-3-18设置第一对主从边界后的效果图(1)选取空气腔的上表面,单击右键,在下拉菜单中选择AssignExcitation→FloquetPort。(2)在弹出的窗口中,General标签页下,Name项默认为FloquetPort1.LatticeCoordinateSystem项中,A后的下拉菜单中选择NewVector,回到绘图窗口,掩盖面上一条边做一条积分线,做好后旁边自动标记字母a。B后的下拉菜单