文登考研数学--线性代数--习题集及其答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1第一章行列式一.填空题1.四阶行列式中带有负号且包含a12和a21的项为______.解.a12a21a33a44中行标的排列为1234,逆序为0;列标排列为2134,逆序为1.该项符号为“-”,所以答案为a12a21a33a44.2.排列i1i2…in可经______次对换后变为排列inin-1…i2i1.解.排列i1i2…in可经过1+2+…+(n-1)=n(n-1)/2次对换后变成排列inin-1…i2i1.3.在五阶行列式中3524415312)23145()15423()1(aaaaa=______3524415312aaaaa.解.15423的逆序为5,23145的逆序为2,所以该项的符号为“-”.4.在函数xxxxxxf21112)(中,x3的系数是______.解.x3的系数只要考察234222xxxxxx.所以x3前的系数为2.5.设a,b为实数,则当a=______,且b=______时,010100abba.解.0)(11010022baabbaabba.所以a=b=0.6.在n阶行列式D=|aij|中,当ij时aij=0(i,j=1,2,…,n),则D=______.解.nnnnaaaaaaaa22112122211100007.设A为3×3矩阵,|A|=-2,把A按行分块为321AAAA,其中Aj(j=1,2,3)是A的第j行,则行列式121332AAAA______.解.121332AAAA6||33233211213AAAAAAAA.二.计算证明题21.设4322321143113151||A计算A41+A42+A43+A44=?,其中A4j(j=1,2,3,4)是|A|中元素a4j的代数余子式.解.A41+A42+A43+A441111321143113151210320206)1(000121013201206114=6210032020612.计算元素为aij=|i-j|的n阶行列式.解.111111110021201110||nnnnnA每行减前一行由最后一行起,)1(2)1(1000201201121nnnnnnn列每列加第3.计算n阶行列式nxxxnxxxnxxxDnnnn212121222111(n2).解.当2nnxxxnxxxnxxxDnnnn222222111+nxxnxxnxxnn2121212211=nxxxxnxxxxnxxxxnnnn33322221111+nxxxnxxxnxxxnnn3232322221113+nxxxnxxxnxxxnnn313131222111+nxxnxxnxxnn3213213212211=-nxxxnxxxnxxxnnn313131222111=-nxxxnxxxnxxxnnn111222111-nxxnxxnxxnn3131312211=0当2n2122112121xxxxxx4.证明:奇数阶反对称矩阵的行列式为零.证明:||||)1(||||||,AAAAAAAnTT(n为奇数).所以|A|=0.5.试证:如果n次多项式nnxCxCCxf10)(对n+1个不同的x值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)证明:假设多项式的n+1个不同的零点为x0,x1,…,xn.将它们代入多项式,得关于Ci方程组00010nnxCxCC01110nnxCxCC…………010nnnnxCxCC系数行列式为x0,x1,…,xn的范德蒙行列式,不为0.所以010nCCC6.设).(',620321)(232xFxxxxxxxF求解.xxxxxxxF620321)(232=xxxxxx3103211222=xxxxxx310201222=xxxxx3102101222=32220021012xxxxxx426)('xxF第二章矩阵一.填空题1.设1,2,3,,均为4维向量,A=[1,2,3,],B=[1,2,3,],且|A|=2,|B|=3,则|A-3B|=______.解.3222|3|321BA=38321=321(856|)|3|(|8)3321BA2.若对任意n×1矩阵X,均有AX=0,则A=______.解.假设mA1,i是A的列向量.对于j=1,2,…,m,令010jX,第j个元素不为0.所以m10010j(j=1,2,…,m).所以A=0.3.设A为m阶方阵,存在非零的m×n矩阵B,使AB=0的充分必要条件是______.解.由AB=0,而且B为非零矩阵,所以存在B的某个列向量bj为非零列向量,满足Abj=0.即方程组AX=0有非零解.所以|A|=0;反之:若|A|=0,则AX=0有非零解.则存在非零矩阵B,满足AB=0.所以,AB=0的充分必要条件是|A|=0.4.设A为n阶矩阵,存在两个不相等的n阶矩阵B,C,使AB=AC的充分条件是______.解.0||0)(ACBCBAACABCB非零且且5.42121bbbaaan=______.解.nnnnnnnbabababababababababbbaaa212221212111421216.设矩阵12,23,3211BEAABA则=______.5解.2A32113211=7841EAAB232=7841-9633+2002=021221||*1BBB2210=112107.设n阶矩阵A满足12,032AEAA则=______.解.由,0322EAA得EEAA3)2(.所以0|3||2|||EEAA,于是A可逆.由,0322EAA得)2(31,03211EAAAEA8.设)9()3(,10002010121EAEAA则=______.解.2A100020101100020101=100040201EA92800050208,EA340005010410001000140005010441000100011000501044100010410110005000441000510161041100010001,41000510161041)3(1EA)9()3(21EAEA=41000510161041800050208=2000101029.设.______])2[(______,)(_______,,3342122111*1*1AAAA则6解.|A|=-3-12+8+8+6-6=11000100013342122111040120015702302111040313200157032102111373203132031313100321034011373225249331000100013722524931000100013722524931A||)(,||,||1*1**1AAAAAAAAA3342122111131*4)2(||)2()2(|2|)2(AAAAAA414)4(])2[(111*AAA33421221110.设矩阵3111522100110012A,则A的逆矩阵1A=______.解.211111121,215331521使用分块求逆公式1111100BCABABCA-112121532111=11730197所以21117533019002100111A二.单项选择题1.设A、B为同阶可逆矩阵,则(A)AB=BA(B)存在可逆矩阵P,使BAPP1(C)存在可逆矩阵C,使BACCT(D)存在可逆矩阵P和Q,使BPAQ解.因为A可逆,存在可逆EAQPQPAAAA使,.因为B可逆,存在可逆EBQPQPBBBB使,.所以AAAQP=BBBQP.于是BQAQPPBAAB11令ABPPP1,1BAQQQ.(D)是答案.2.设A、B都是n阶可逆矩阵,则1002BAT等于(A)12||||)2(BAn(B)1||||)2(BAn(C)||||2BAT(D)1||||2BA解.121||||)2(002BABAnT.(A)是答案.3.设A、B都是n阶方阵,下面结论正确的是(A)若A、B均可逆,则A+B可逆.(B)若A、B均可逆,则AB可逆.(C)若A+B可逆,则A-B可逆.(D)若A+B可逆,则A,B均可逆.解.若A、B均可逆,则111)(ABAB.(B)是答案.4.设n维向量)21,0,,0,21(,矩阵TEA,TEB2其中E为n阶单位矩阵,则AB=(A)0(B)-E(C)E(D)TE解.AB=)(TE)2(TE=TE+2T-2TT=E.)21(T(C)是答案.5.设333231232221131211aaaaaaaaaA,233322322131131211232221aaaaaaaaaaaaB,1000010101P,设有P2P1A=B,则P2=8(A)101010001(B)101010001(C)100010101(D)100010101解.P1A表示互换A的第一、二行.B表示A先互换第一、二行,然后将互换后的矩阵的第一行乘以(-1)加到第三行.所以P2=101010001.(B)是答案.6.设A为n阶可逆矩阵,则(-A)*等于(A)-A*(B)A*(C)(-1)nA

1 / 45
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功