医学影像设备学第六章磁共振成像设备第一节概述目录一、发展简史二、特点三、组成及工作原理第一节概述MR现象是1946年分别由美国斯坦福大学物理系菲利克斯·布洛赫(FelixBloch)教授和哈佛大学的爱德华·普塞尔(EdwardPurcell)教授领导的小组同时独立发现的。Bloch和Purcell共同获得了1952年的诺贝尔物理学奖。FelixBloch(1905-1983)EdwardMillsPurcell(1912-1997)第一节概述MR的基本原理是:当处于磁场中的物质受到射频(RadioFrequency,RF)电磁波的激励时,如果RF电磁波的频率与磁场强度的关系满足拉莫尔方程,则组成物质的一些原子核会发生共振,即所谓的MR现象。原子核吸收了RF电磁波的能量,当RF电磁波停止激励时,吸收了能量的原子核又会把这部分能量释放出来,即发射MR信号。第一节概述1967年,约翰斯(JasperJohns)等人首先利用活体动物进行实验,成功地检测出动物体内分布的氢、磷和氮的MR信号。1970年,美国纽约州立大学的达马迪安(RaymondDamadian)对已植入恶性肿瘤细胞的老鼠进行了MR实验,发现正常组织与恶性肿瘤组织的MR信号明显不同。RaymondDamadian(1936~)1971年,达马迪安的研究成果在《Science》杂志上发表。达马迪安认为,利用MR对生物体进行成像是可能的。1977年达马迪安等人建成了人类历史上第一台全身MRI设备,并于1977年7月3日取得第一幅横断面质子密度图像。第一节概述第一节概述1972年,美国纽约州立大学的劳特伯(PaulLauterbur)指出用MR信号完全可以重建图像1973年劳特伯采用三个线性梯度磁场选择性地激发样品,使之得到所需的成像层面。Lauterbur(1929~)第一节概述在成像方法方面,除了劳特伯的组合层析法和达马迪安的FONAR法以外,还出现了许多新方法,大大丰富了MRI理论。1974年,英国科学家曼斯菲尔德(PeterMansfield)研究出脉冲梯度法选择成像断层的方法;1974年英国诺丁汉大学的欣肖(W.S.Hinshaw)提出的敏感点成像方法(sensitivepoint);1975年瑞士苏黎世的库玛(A.Kumar)、韦特(D.Wetti)和恩斯特(R.R.Ernst)等三人报道的快速傅立叶成像法;1977年鲍托姆雷(P.A.Bootomley)在敏感点成像技术的基础上提出了多敏感点成像法;第一节概述第一节概述平面回波成像法早在1977年就已提出,但因受硬件条件的限制现在才实现。快速傅立叶成像方法因具有效率高、功能多、产生的图像分辨力高、伪影小等优点,故被广泛地应用。2003年的诺贝尔生理学或医学奖授予了美国科学家劳特伯和英国诺丁汉大学教授曼斯菲尔德。MRI技术飞速发展,高性能梯度磁场、开放型磁体、软线圈、相控阵线圈以及计算机网络的应用,显示出MRI设备的硬件发展趋势。超高磁场MRI设备发展十分迅速,3T全身MRI设备已用于临床,9.4TMRI设备样机已研制成功。第一节概述7TSiemensMR低场强MRI设备,不论是永磁型、常导型或超导型都已采用开放型;中场强开放式MRI设备也已应用。性能大幅度提高,图像质量、成像功能也有很大改善,成像时间亦有所缩短,且病人舒适、减少了幽闭恐怖感,又便于操作和检查,而且还便于介入治疗。第一节概述第一节概述采用级联脉宽调制功率放大级构成的增强梯度放大器已可输出2000V、500A的大功率信号,能支持任意形状的梯度脉冲波形。已开发出双梯度系统,最大梯度磁场强可达80mT/m,其切换率可达到150mT/m/ms。多元阵列式全景线圈的发展十分迅速,目前已能支持4、8、16、32、64个接收通道,支持3~4倍的图像采集速度。第一节概述在图像重建方面,非笛卡儿的重建、不完整数据的采集、与并行成像技术有关的重建方法都是当前十分活跃的领域。并行成像技术,又称为灵敏度编码技术(sensitivityencodingtechnique,SENSE)或阵列转换处理器技术(arrayspatialsensitivityencodingtechnique,ASSET),是一个重大的技术突破,能大幅度缩短MRI扫描时间。MRI技术进展:①EPI使MR的成像时间大大缩短,通常每秒可获取20幅图像,30ms内采集完成一幅完整的图像。具有瞬时成像,可去除运动伪影、高时间分辨力便于动态研究。第一节概述第一节概述②磁共振血管成像(magneticresonanceangiographer,MRA):MRA不需要对比剂即可得到血管造影像。近年发展的动态增强MRA(dynamiccontrast-enhancedMRA,DCEMRA),应用静脉注射顺磁性对比剂是一全新MRA技术。第一节概述③FMRI技术:FMRI技术包括血氧水平依赖对比增强成像技术、弥散加权成像、灌注加权成像、弥散张量成像及MRS等。第一节概述④磁共振成像介入,有良好的组织对比度,亚毫米级空间分辨力,全方位地观察。⑤消除伪影的技术,如空间预饱和技术、梯度磁矩衡消技术和快速成像技术等,可有效消除人体的生理运动如呼吸、血流、脑脊液脉动、心脏跳动、胃肠蠕动等引起的磁共振图像的伪影。第一节概述二、特点MRI设备与其他影像设备相比较具有以下优点:1.无电离辐射危害。2.多参数成像,可提供丰富的诊断信息。3.高对比度成像在所有医学影像技术中,MRI的软组织对比分辨力最高。4.MRI设备具有任意方向断层的能力MRI设备可获得横断、冠状断、矢状断和不同角度的斜断面图像。第一节概述5.无须使用对比剂,可直接显示心脏和血管结构采用MRI技术可以测定血流,其原理为流体的时飞(timeofflight,TOF)效应和相位对比(phasecontrast,PC)敏感性(不需注射对比剂)。6.无骨伪影干扰,后颅凹病变清晰可辨。7.可进行功能、组织化学和生物化学方面的研究。第一节概述三、组成及工作原理MRI设备的基本结构,主要由主磁体、梯度系统、射频系统、计算机系统和其他辅助设备等组成。目前MRI设备已普遍提供符合DICOM3.0标准的输出接口,可方便连接到PACS中。第一节概述三、组成及工作原理MR设备结构框图第一节概述MRI设备一般把主磁体做成圆柱形或矩形腔体,里面不仅可以安装主磁体的线圈,还可以安装梯度线圈和全身的RF发射线圈以及接收线圈。梯度发生器产生一定开关形状的梯度电流,经放大后由驱动电路送至梯度线圈产生所需的梯度磁场,以实现MR信号的空间编码。RF发射器包括频率合成器、RF形成、放大和功放,产生所需要的RF脉冲电流,送至RF发射线圈。第一节概述RF接收器由前置放大器、RF放大器、带通滤波器、检波器、低频放大器和A/D转换器等组成。计算机将采集到的数据进行图像重建,并将图像数据送到显示器进行显示。计算机还负责对整个系统各部分的运行进行控制,使整个成像过程动作协调一致,产生高质量图像。第二节主磁体系统目录一、主磁体的性能指标二、永磁型磁体三、超导型磁体四、匀场技术五、磁屏蔽第二节主磁体系统主磁体是MRI设备最重要、成本最高的部件。作用是产生一个均匀的静磁场,使处于该磁场中的人体内氢原子核被磁化而形成磁化强度矢量。当磁化强度矢量受到满足MR条件的RF交变磁场激励时,即发出MR信号。第二节主磁体系统B0的稳定性非常重要。只要有十亿分之几十T的变化,就会引起至少3°的相位差,图像上将会产生伪影。B0的均匀性亦非常重要。磁场不均匀会产生信号丢失以及几何畸变。一般要求在直径25~50cm的球体内均匀度应为10~100ppm。第二节主磁体系统对于全身成像主磁体,直径大约为1~1.2m。对于动物或人的四肢成像,通常直径为0.3m。磁体会对人体健康或设备造成不同程度的损害、干扰和破坏,因此磁体的屏蔽十分重要。主磁体储存的磁能一般有兆焦级的巨大能量,一旦磁体电源或内部接线断开,或超导磁体突然熄火,将有大量能量释放出来引起很大的破坏作用。一、主磁体的性能指标临床用MRI设备的主磁体有三种:永磁体、常导磁体和超导磁体,常导磁体目前基本已淘汰。磁场强度磁场均匀性磁场稳定性有效孔径边缘场空间范围第二节主磁体系统第二节主磁体系统1.磁场强度MRI设备的主磁场又叫静磁场。在一定范围内增加其强度,可提高图像的SNR。MRI设备的场强不能太低。随着超导材料价格和低温制冷费用的下降,现在大多数MRI设备采用超导磁体,磁场强度在0.5~9.4T范围。第二节主磁体系统2.磁场均匀性主磁体在其工作孔径内产生匀强磁场B0。为对病人进行空间定位,在B0之上还需叠加梯度磁场△B。单个体素上的△B必须大于其磁场偏差,否则将会扭曲定位信号,降低成像质量。磁场的偏差越大,表示均匀性越差,图像质量也会越低。磁场均匀性(magneticfieldhomogeneity)是指在特定容积限度内磁场的同一性,即穿过单位面积的磁力线是否相同。这里的特定容积通常取一定直径的球形空间,以DSV表示(diameterofsphericalvolume,DSV),如10cmDSV,40cmDSV。在MRI设备中,均匀性是以主磁场的10作为一个偏差单位定量表示的,习惯上这样的偏差单位称为ppm(partpermillion)。第二节主磁体系统第二节主磁体系统均匀性标准的规定还与所取测量空间的大小有关。一般来说,整个孔径范围为50ppm;与磁体中心同心的、直径为40cm和50cm的球体内分别是510ppm和10ppm;被测标本区每立方厘米的空间应小于0.01ppm。在测量空间一定的情况下,磁场均匀性还可用另外一种方法表示,即给出磁场强度的ppm值在给定空间的变化范围,这叫做绝对值表示法。磁场均匀性的测量前先要精确定出磁体中心,再在一定半径的空间球体上布置场强测量仪(高斯计)探头,并逐点测量其场强,然后通过计算机处理数据、计算整个容积内的磁场均匀性。磁场均匀性并不是固定不变的。第二节主磁体系统第二节主磁体系统3.磁场稳定性受磁体附近铁磁性物质、环境温度或匀场电源漂移等因素的影响,磁场的均匀性或B0也会发生变化,这就是常说的磁场漂移。磁场稳定度是指单位时间磁场的变化率,短期稳定度要在几个ppm/h之内,长期稳定度要在10ppm/h之内。第二节主磁体系统4.磁体有效孔径磁体有效孔径是指梯度线圈、匀场线圈、射频体线圈、衬垫、内护板、隔音腔和外壳等部件在磁体检查孔道安装完毕,所剩空间的有效内径。对于全身MRI设备,一般来说其有效孔径尺寸必须至少达到60cm。第二节主磁体系统4.边缘场空间范围主磁体周围空间中磁场称为边缘场,其大小与空间位置有关,随着空间点与磁体距离的增大,边缘场的场强逐渐降低。边缘场是以磁体原点为中心向周围空间发散的,因而具有对称性,通常以等高斯线图来表示。第二节主磁体系统二、永磁型磁体1.结构永磁体由永久磁铁如铁氧体或钕铁的磁砖拼砌而成。MRI设备采用的永磁体分为闭合式和开放式两种类型,如图所示。永磁体第二节主磁体系统2.性能永磁体的造价低,场强可达0.35T,能产生优质图像,耗能低,运行维护费用低,从最初100吨减少到现在的3~5吨。永磁体的缺点是磁场强度较低,磁场的均匀性欠佳,环境温度的变化将导致设备的稳定性变差,不能满足临床波谱研究的需要。第二节主磁体系统3.主要技术参数磁场强度:0.1~0.4T磁场均匀性:≤10ppm(直径为50cm的球体)瞬时稳定性:≤1±0.5ppm/h磁体孔径:1m×0.5m高斯线性范围:横向2.5m,纵向2m磁体重量:约10t第二节主磁体系统(三)超导型磁体某些物质的电阻在超低温下急剧下降为零的性质是科学家KamerlinghOnnes在1911年首先发现的,这些物质称为超导体。超导体对电流几乎没有阻力,因此允许在很小的截面积上流过非常大的电流,而不产生热量;且电流一旦开始将无休止地在电路上循环,而不需要电源。超导磁体就是利用某些物质的这种性质制成的。第二节主磁体系统1.材料目前超导磁体用的材料是铌钛合金,铌