高中数学选修计数原理练习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第十一章计数原理第1讲两个基本计数原理对应学生用书P168考点梳理1.分类加法计数原理完成一件事,有n类办法:在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.2.分步乘法计数原理完成一件事,需要分成n个步骤,缺一不可,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法.【助学·微博】两个原理的联系与区别联系:两个计数原理,都是关于完成一件事的不同方法种数的问题.区别:分类计数原理与分类有关,各种方法相互独立,用其中任何一种方法都可以完成这件事一步到位;分步计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,缺一不可.考点自测1.“海山联合—2012”中俄联合军演在中国青岛海域举行,在某一项演练中,中方参加演习的有4艘军舰、3架飞机;俄方有5艘军舰、2架飞机,若从中、俄两方中各选出2个单位(1架飞机或1艘军舰都作为一个单位,所有的军舰两两不同,所有的飞机两两不同),且选出的四个单位中恰有一架飞机的不同选法共有________种.解析若中方选出一架飞机,则选法有C14C13C25=120(种);若俄方选出一架飞机,则选法有C15C12C24=60(种).故不同选法共有120+60=180(种).答案1802.(2012·全国大纲卷改编)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有________种.解析甲先排在其余4个位置上有C14种方法,剩余元素则进行全排列,有A55种排法,由分步乘法计数原理,得一共有C14A55=480(种).答案4803.(2012·广州模拟)已知集合A={1,2,3,4},B={5,6,7},C={8,9}.现在从这三个集合中取出两个集合,再从这两个集合中各取出一个元素,组成一个含有两个元素的集合,则一共可以组成________个集合.解析C14C13+C14C12+C13C12=26(个).答案264.(2010·湖南卷改编)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为________.解析若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24,由分类计数原理知满足条件的信息个数为1+C34+C24=11.答案115.某电子元件是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.解析法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).法二恰有i个焊点脱落的可能情况为Ci4(i=1,2,3,4)种,由分类计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).答案15对应学生用书P168考向一分类加法计数原理【例1】若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,问集合A={a1,a2,a3}的不同分拆种数有多少个?解若A1=∅,则A2={a1,a2,a3};若A1={a1},则A2={a2,a3}或{a1,a2,a3};若A1={a2},则A2={a1,a3}或{a1,a2,a3};若A1={a3},则A2={a1,a2}或{a1,a2,a3};若A1={a1,a2},则A2={a3}或{a1,a3}或{a2,a3}或{a1,a2,a3};若A1={a1,a3},则A2={a2}或{a1,a2}或{a2,a3}或{a1,a2,a3};若A1={a2,a3},则A2={a1}或{a1,a2}或{a1,a3}或{a1,a2,a3};若A1={a1,a2,a3},则A2=∅或{a1}或{a2}或{a3}或{a1,a2}或{a1,a3}或{a2,a3}或{a1,a2,a3}.故不同的分拆种数为1+3×2+3×4+8=27.[方法总结]分类时,首先要确定一个恰当的分类标准,然后进行分类;其次分类时要注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.【训练1】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有多少个?解把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个);第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).考向二分步乘法计数原理【例2】如图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解(1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成m·n·k个三角形.(2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成C2mC2n+C2nC2k+C2kC2m个平行四边形.[方法总结]此类问题,首先将完成这件事的过程分步,然后再找出每一步中的方法有多少种,求其积.注意:各步之间相互联系,依次都完成后,才能做完这件事.简单说使用分步计数原理的原则是步与步之间的方法“相互独立,逐步完成”.【训练2】由数字1,2,3,4(1)可组成多少个3位数;(2)可组成多少个没有重复数字的3位数;(3)可组成多少个没有重复数字的三位数,且百位数字大于十位数字,十位数字大于个位数字.解(1)百位数共有4种排法;十位数共有4种排法;个位数共有4种排法,根据分步计数原理共可组成43=64(个)3位数.(2)百位上共有4种排法;十位上共有3种排法;个位上共有2种排法,由分步计数原理共可排成没有重复数字的3位数4×3×2=24(个).(3)排出的三位数分别是432、431、421、321,共4个.考向三涂色问题【例3】如图,用5种不同的颜色给图中A、B、C、D四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,求有多少种不同的涂色方法?解法一如题图分四个步骤来完成涂色这件事:涂A有5种涂法;涂B有4种方法;涂C有3种方法;涂D有3种方法(还可以使用涂A的颜色).根据分步计数原理共有5×4×3×3=180(种)涂色方法.法二由于A、B、C两两相邻,因此三个区域的颜色互不相同,共有A35=60(种)涂法;又D与B、C相邻,因此D有3种涂法;由分步计数原理知共有60×3=180(种)涂法.[方法总结]涂色问题的实质是分类与分步,一般是整体分步,分步过程中若出现某一步需分类时还要进行分类.涂色问题通常没有固定的方法可循,只能按照题目的实际情况,结合两个基本原理和排列组合的知识灵活处理.【训练3】如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法数.解法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).法二以S、A、B、C、D顺序分步染色第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).法三按所用颜色种数分类第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).对应学生用书P170热点突破28两个计数原理的综合应用高考对两个计数原理应用的考查,多以填空题的形式出现,考查蕴含在实际问题的解决中,多是两原理结合在一起应用,做好问题转化,分好类与步是关键.【示例】(2012·四川卷改编)方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有________条.[审题与转化]第一步:以y的系数a的取值为标准进行分类.令a依次取值1,2,3,-2,-3.第二步:在a值确定的情况下,再依次确定c、b2值.[规范解答]第三步:当a=1时,若c=0,则b2有4,9两个取值,共2条抛物线;若c≠0,则c有4种取值,b2有两种,共有2×4=8(条)抛物线;当a=2时,若c=0,b2取1,4,9三种取值,共有3条抛物线;若c≠0,c取1时,b2有2个取值,共有2条抛物线,c取-2时,b2有2个取值,共有2条抛物线,c取3时,b2有3个取值,共有3条抛物线,c取-3时,b2有3个取值,共有3条抛物线.∴共有3+2+2+3+3=13(条)抛物线.同理,a=-2,-3,3时,共有抛物线3×13=39(条).由分类加法计数原理知,共有抛物线39+13+8+2=62(条).[反思与回顾]第四步:本题体现了分类讨论思想在计数原理解题中的作用.高考经典题组训练1.(2012·北京卷改编)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为________个.解析三位数可分成两种情况:(1)奇偶奇;(2)偶奇奇.对(1),个位(3种选择),十位(2种选择),百位(2种选择),共12种;对(2),个位(3种选择),十位(2种选择),百位(1种选择),共6种,即12+6=18(个).答案182.(2012·浙江卷改编)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.解析4个数和为偶数,可分为三类.四个奇数C45,四个偶数C44,二奇二偶,C25C24.共有C45+C44+C25C24=66(种)不同取法.答案663.(2012·课标全国卷改编)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有________种.解析甲地由1名教师和2名学生:C12C24=12(种).答案124.(2011·北京卷)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).解析法一数字2只出现一次的四位数有C14=4(个);数字2出现两次的四位数有C24C22=6(个);数字2出现三次的四位数有C34=4(个).故总共有4+6+4=14(个).法二由数字2,3组成的四位数共有24=16(个),其中没有数字2的四位数只有1个,没有数字3的四位数也只有1个,故符合条件的四位数共有16-2=14(个).答案145.(2012·大纲卷改编)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有________种.解析利用分步计数原理,先填写

1 / 42
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功