2012届安徽人教版学海导航新课标高中总复习(第1轮)物理:第5章_3机械能__机械能守恒定律

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

3机械能机械能守恒定律第五章机械能1.机械能是否守恒的判断(2010安徽)伽利略曾设计如图531所示的一个实验,将摆球拉至M点放开,摆球会达到同一水平高度上的N点.如果在E或F处钉上钉子,摆球将沿不同的圆弧达到同一高度的对应点.反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M点.这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小()A.只与斜面的倾角有关B.只与斜面的长度有关C.只与下滑的高度有关D.只与物体的质量有关图531解析:伽利略的理想斜面和摆球实验,斜面上的小球和摆线上的小球好像“记得”起自己的起始高度,实质上动能与势能的转化过程中,总能量不变.物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,高度越大,初始的势能越大,转化后的末动能也就越大,速度越大,C正确.点评:以物理史料和探究类问题为背景编拟试题,体现新课程“注重科学探究,提倡学习方式多样化”的理念.培养学生的科学创新精神和提高创新能力是落实素质教育的核心,在中学物理教学中实施创新教育时物理学史有着重要的作用.如图5-3-2,物块、斜面和水平面都是光滑的,物块从静止开始沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?图5-3-2以物块和斜面组成的系统为研究对象,很明显物块下滑过程中系统不受摩擦和介质阻力,故系统机械能守恒.又由斜面将向左运动,即斜面的机械能将增大,故物块的机械能一定将减少.2.单个物体机械能守恒定律的应用如图5-3-3所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R.一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度).求物块初始位置相对圆形轨道底部的高度h的取值范围.设物块在圆形轨道最高点的速度为v,由机械能守恒得①物块在最高点受的力为重力mg、轨道压力N.重力与压力的合力提供向心力,有②物块能通过最高点的条件N≥0③由②③两式得④2122mghmgRmv2vmgNmR vgR由①④式得h≥5R/2⑤按题的要求,N≤5mg,由②式得⑥由①⑥式得h≤5R⑦h的取值范围是6vRg552RhR点评:对单个物体机械能守恒定律的适用条件:只有重力或弹簧的弹力做功.山地滑雪是人们喜爱的一项体育运动.一滑雪坡由AB和BC组成,AB是倾角为37°的斜坡,BC是半径为R=5m的圆弧面,圆弧面和斜面相切于B,与水平面相切于C,如图5-3-4所示,AB竖直高度差h1=8.8m,竖直台阶CD高度差为h2=5m,台阶底端与倾角为37°斜坡DE相连.运动员连同滑雪装备总质量为80kg,从A点由静止滑下通过C点后飞落到DE上(不计空气阻力和轨道的摩擦阻力,g取10m/s2,sin37°=0.6,cos37°=0.8).求:图5-3-4(1)运动员到达C点的速度大小;(2)运动员经过C点时轨道受到的压力大小;(3)运动员在空中飞行的时间.(1)A→C过程,由机械能守恒定律,得:mg(h1+ΔR)=mvC2ΔR=R(1-cos37°)所以vC=14m/s(2)在C点,由牛顿第二定律有:所以FC=3936N122CCmvFmgR,由牛顿第三定律知,运动员在C点时轨道受到的压力大小为3936N(3)设在空中飞行时间为t,则有:所以t=2.5s(t=-0.4s舍去)2212tan37Cgthvt3.系统机械能守恒定律的应用如图5-3-5所示,倾角为θ的光滑斜面上放有两个质量均为m的小球A和B,两球之间用一根长为L的轻杆相连,下面的小球B离斜面底端的高度为h.两球从静止开始下滑,不计球与地面碰撞时的机械能损失,且地面光滑,求(1)两球在光滑水平面上运动时的速度大小;(2)整个运动过程中杆对A球所做的功.图5-3-5(1)由于不计摩擦及碰撞时的机械能损失,因此两球组成的系统机械能守恒,两球在光滑水平面上运动时的速度大小相等,设为v,根据机械能守恒定律有:解得212(sin)222Lmghmv2sin.vghgL(2)因两球在光滑水平面上运动的速度比小球B从h处自由滑下的速度大,增加的动能就是杆对B做正功的结果,B增加的动能为因为系统机械能守恒,所以杆对B球做的功与杆对A球做的功数值应该相等,杆对B球做正功,对A球做负功,即杆对A球做的功为2gh2k11sin.22BEmvmghmgL1sin.2WmgL点评:对某一系统,机械能守恒定律的适用条件:物体间只有动能和重力势能及弹性势能相互转化,系统跟外界没有发生机械能的传递,机械能也没有转变成其他形式的能(如没有内能增加),则系统的机械能守恒.如图5-3-6所示,一固定的楔形木块,其斜面倾角θ=30°,另一边与地面垂直,顶上有一定滑轮,一条细绳将物块A和B连接,A的质量为4m,B的质量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升,物块A与斜面间无摩擦,设当A沿斜面下滑x距离后,细绳突然断了,求物块B上升的最大高度H.图5-3-6设A沿斜面下滑x距离时的速度为v,B的速度也是v,此时A的机械能减少了ΔEA=mAgx·sinθ-mAv2=4mgx×-×4mv2=2mgx-2mv2B的机械能增加了ΔEB=mgx+mv2由ΔEA=ΔEB得:2mgx-2mv2=mgx+mv21212121212细绳突然断的瞬间,B竖直上升的速度为v,此后B做竖直上抛运动,设继续上升的距离为h,对B由机械能守恒定律得B上升的最大高度H=h+x,解之得:H=1.2x.212Bmvmgh4.机械能与圆周运动的综合问题如图5-3-6所示,用细圆管组成的光滑轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径rR.有一质量为m,半径比r略小的光滑小球以水平初速度v0射入圆管,问:图5-3-6(1)若要小球能从C端出来,初速度v0需多大?(2)在小球从C端出来的瞬间,管壁对小球的弹力为mg,那么小球的初速度v0应为多少?12(1)要使小球能运动到C处,且从C端出来,必须满足即:①(2)以B点为重力势能零点,则小球到达C处时的重力势能为2mgR,从B到C处机械能守恒方程:②小球在C处受重力mg和细管竖直方向的作用力FN,根据牛顿第二定律,得:③2012,2mvmgR02vgR22011222CmvmgRmv2CNmvmgFR由②③解得④讨论④式,即得解:a.当小球受到向下的压力时,b.当小球受到向上的支持力时,205NmvFmgR01,5.5.2NFmgvgR01,4.5.2NFmgvgR易错题:一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行.从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A.0B.8JC.16JD.32J()22211()24432.22FkWmvmvJDE20【错解】【错,选错解原因是不理解动能是标量,认为不同方向的动能值相同,而意义不同解分析】.=+--=?=2110.22FkWEmvmvA20动能是标量,没有方向,且是恒正的一个量,由动能定理【正解】得:,选=D=-=点评:动能定理公式两边每一项都是标量,因此动能定理是一个标量方程.虽然如此,当我们计算功时,还是要注意力的方向与位移方向的关系.

1 / 27
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功