BlindImageQualityAssessmentBasedonMachineLearning高新波ISN国家重点实验室西安电子科技大学Nov.1~3,2013安子科技学MLA2013MLA2013OutlineImageQualityAssessment(IQA)ImageQualityAssessment(IQA)MachineLearningandIQAMachineLearningandIQARelatedWorkofMyGroupRelatedWorkofMyGroupOpeningIssuesOpeningIssuesVIPSLab,XidianUniversityMLA2013OutlineImageQualityAssessment(IQA)ImageQualityAssessment(IQA)MachineLearningandIQAMachineLearningandIQARelatedWorkofMyGroupRelatedWorkofMyGroupOpeningIssuesOpeningIssuesVIPSLab,XidianUniversityMLA2013APictureIsWorthaThousandWordsVIPSLab,XidianUniversityMLA2013ImageQualityAssessment(IQA)FidelityIntelligibilityFidelityIntelligibilityThedistortionlevelbetweenTheabilityofthetestimageonThedistortionlevelbetweenthetestandreferenceimagesintheprocessofobservationfhhTheabilityofthetestimageonprovidinginformationforhuman/machineconsumerswithrespecttthfiofthehumaneye.tothereferenceimage.VIPSLab,XidianUniversityMLA2013IQAandItsApplicationsVideoBloggingPrintingEnhancementRestorationMonitorimagequalityinqualitycontrolsystemsImageAcquisitionWatermarkingAuthenticationTele-HealthcontrolsystemsiComputerGraphicsChannelCodingIQABenchmarkimage-processingsystemsandalgorithmsRetrievalContentDeliveryCompressionBroadcastingGamingOptimizethesystemsandDeliveryDigitalQoSMonitoringsystemsandparametersettingsCameraQoSMonitoringSurveillanceVIPSLab,XidianUniversityMLA2013SubjectiveIQAVerySatisfiedVerySatisfiedRUsersatisfactionMOS4.3100VerySatisfiedVerySatisfiedSatisfiedSatisfiedSomeUsersDissatisfiedSomeUsersDissatisfied4.34.03.6908070ManyUsersDissatisfiedManyUsersDissatisfiedNearlyAllUsersDissatisfiedNearlyAllUsersDissatisfied3.12.610706050[ITU,BT.500-13]NotRecommendedNotRecommended1.00MeanOpinionScore(MOS)ThemostreliablewayyExpensiveandinefficientVIPSLab,XidianUniversityMLA2013ObjectiveIQALuminanceShift(MSE=309)OriginalImageContrastStretch(MSE=306)ImpulsiveNoise(MSE=313)JPEGCompression(MSE=309)GaussianNoise(MSE=309)Blurring(MSE=308)SpatialShift(MSE=590)Calculatepixel-wisedistances.Lackofconsiderationofhumanvisualproperty.[Wang&Bovik,IEEESPM,2009]VIPSLab,XidianUniversityImageQualityAssessment(IQA)MLA2013ImageFidelityMetricsHVSModelMetricsAccumulatephysicalerrorsoftheimageSimulatevariousaspectsoftheHVSperceptionproperty¾MeanSquaredError(MSE)¾PeakSignaltoNoiseRatio(PSNR)¾Dalyvisibledifferencespredictor(VDP)¾PerceptualDistortionMetric(PDM)SignalStructureMetricsMachineLearningMetricsIQAggDescribeimagedegradationwithperceivedchangeinStructuralinformationUtilizemachinelearningindifferentaspectsofimagequalityassessmentinformation¾StructureSimilarity(SSIM)¾Feature-Similarity(FSIM)¾BlindImageQualityIndex(BIQI)¾Blind/ReferencelessImageSpatialQUalityEvaluator(BRISQUE)VIPSLab,XidianUniversityMLA2013OutlineImageQualityAssessment(IQA)ImageQualityAssessment(IQA)MachineLearningandIQAMachineLearningandIQARelatedWorkofMyGroupRelatedWorkofMyGroupOpeningIssuesOpeningIssuesVIPSLab,XidianUniversityMLA2013MachineLearningMachineLearningseekstodeveloptheoriesandcomputersystemsfortirepresenting;classifying,clusteringandrecognizing;reasoningunderuncertainty;predicting;andreactingto…complex,realworlddata,basedonthesystem'sownexperiencewithdata,and(hopefully)underaunifiedmodelormathematicalframework,thatcanbeformallycharacterizedandanalyzedcantakeintoaccounthumanpriorknowledgecangeneralizeandadaptacrossdataanddomainscangeneralizeandadaptacrossdataanddomainscanoperateautomaticallyandautonomouslyandcanbeinterpretedandperceivedbyhuman.VIPSLab,XidianUniversityMachineLearningandIQAMLA2013MachineLearning:subjectiveIQAÆobjectiveIQAUtilizethemachinelearningtomodelthedifferentmodulesofthesubjectiveIQAMachineLearningforFeatureRepresentationMachineLearningforQualityPredictionMachineLearningforDistortionIdentification0.30.350.250.30.3512345678-2.5-2-1.5-1-0.500.5subbande12345678-13-12-11-10-9-8-7-6subband-50500.050.10.150.20.2512345678-2.5-2-1.5-1-0.500.5subbande12345678-13-12-11-10-9-8-7-6subband-50500.050.10.150.2ImageFeaturesFeaturesQualityFeaturesFeaturesDistortionsFeaturesVIPSLab,XidianUniversityMLA2013MachineLearningandIQAMachineLearningforFeatureRepresentationRepresentimagefeaturessparselyandrecombineimagefeaturesoptimallyObtaineffectivefeaturerepresentationsforimagequalityperceptionEnhancethereliabilityofimagequalityassessmentalgorithmygqygMachineLearningRegressionDictionaryLearninggRepresentationLearningTestImagesFeaturesImageQuality…DeepLearning…VIPSLab,XidianUniversityMLA2013MachineLearningandIQALearningaBlindMeasureofPerceptualImageQualitySVRFeaturesMarginalDistribution#2230PCASVRExtractJointDistribution#14400PCATestImagesImageQualityBlur/noiseStatistics#57CompactFeaturesFeaturesExtractfeaturesthatmeasureaspectsofimagestructureandstatisticsRddffddiPCARedundancyoffeaturesarereducedviaPCACompactfeaturesareprojectedtoqualityscoresthroughSVRThemethodaddressesthelimitationwhichassumesthatonlyonedistortiontditithidithdldditildittittypedominatesintheimageanditcanhandleadditionaldistortiontypes[H.Tnag,N.Joshi,&A.Kapor,CVPR,2011