重庆一中2015-2016学年七年级(上)月考数学试卷(11月份)一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.1.计算8x6÷(﹣x3)的结果是()A.﹣8x2B.8x2C.﹣8x3D.8x32.下列图形中,不是轴对称图形的是()A.B.C.D.3.若直角三角形的三边长为偶数,则这三边的边长可能是()A.3,4,5B.6,8,10C.7,24,29D.8,12,204.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()A.B.C.D.5.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于()A.教室地面的面积B.黑板面的面积C.课桌面的面积D.铅笔盒盒面的面积6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.7.下列说法错误的是()A.近似数0.2300有四个有效数字B.近似数1.6与1.60的意义不同C.近似数1.2万精确到十分位D.近似数6950精确到千位是7×1038.如图,在△ABC中,AB的垂直平分线DE,AD=6,△AEC的周长为15,那么△ABC的周长为()A.15B.21C.27D.339.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②S△AEC:S△AEG=AC:AG;③∠ADF=2∠FDB;④CE=DF.其中正确的结论是()A.①②④B.②③④C.只有①③D.①②③④二、填空题:(本大题共10个小题,每小题3分,共30分)在每个小题中,请将答案直接填写在题后的横线上.11.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范、研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.13.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32°,则∠2=度.14.若3m=10,3n=5,则3m﹣n=.15.三根长度分别为3cm,7cm,4cm的木棒能围成三角形的概率是.16.某弹簧的长度与所挂物体质量之间的关系如下表:所挂物体的质量/千克012345…弹簧的长度/厘米1010.410.811.211.612…如果所挂物体的质量用x表示,弹簧的长度用y表示,则满足y与x关系式为:.17.若a+b=6,ab=5,则a2+b2=.18.如图,△ABC中,AB=AC,∠A=42°,PB=CD,PC=BE,则∠EPD=.19.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.20.如图,在△ABC中,AB=AC=BC,AD是BC边上的中线,且CD2=12,点E是边AC的中点,点F是AD上的动点,则一只蚂蚁从E到F,回到C点的最短路程是.三、解答题:(本大题5个小题,共58分)解答时必须给出必要的演算过程或推理步骤.21.计算:(1)23﹣(π﹣2010)0+()﹣1﹣|﹣2|(2)利用乘法公式计算:997×999﹣9982(3)(x+2)2(x﹣2)2(4)(2a+1)2﹣(2a+1)(﹣1+2a)22.化简求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.23.已知:线段a及∠α、∠β.求作:△ABC,使∠A=∠α,AB=a,∠B=∠β.(要求:用尺规作图,不写作法,保留作图痕迹,并写出结论)24.如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC.25.春节期间,某客运站旅客流量不断增大,旅客往往需长时间排队等候购票.经调查发现,每天开始售票时,约有400名旅客排队等候购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张,规定每人只购一张票.某天若同时开放两个售票窗口,售票厅排队等候购票的人数y(人)与售票时间x(分)的关系如图所示.(1)售票到第a分钟时,用含a的代数式表示:新增购票人数为人,两个售票窗口售票人数为人,排队等候购票的人数为人;(2)求a的值;(3)若要在开始售票后20分钟内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?四、解答题(本大题2个小题,共22分)解答时必须给出必要的演算过程或推理步骤.26.如图,AB=CB,∠ABC=60°,且∠EAB=∠FCB,∠ABC=∠FBE,∠CEB=30°.(1)求证:BE=BF;(2)若CE=12,BF=9,求线段AE的长.27.请同学们仔细阅读以下内容:数学课上,老师向同学们介绍了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,则CD=AD=BD=AB.请同学们借助以上知识点探究下面问题:如图2,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.(1)观察:①如图3、图4,当∠CDF=0°或60°时,AM+CKMK(填“>”,“<”或“=”).②如图5,当∠CDF=30°时,AM+CKMK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,若点G是点A关于直线DE的对称点,则AM+CKMK,证明你所得到的结论.(3)如果MK2+CK2=AM2,请直接写出∠CDF的度数.2015-2016学年重庆一中七年级(上)月考数学试卷(11月份)参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填写在下表的相应位置上.1.计算8x6÷(﹣x3)的结果是()A.﹣8x2B.8x2C.﹣8x3D.8x3【考点】整式的除法.【分析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;同底数幂的除法法则为:底数不变,指数相减,计算即可.【解答】解:8x6÷(﹣x3)=﹣8x6﹣3=﹣8x3.故选C.【点评】本题主要考查单项式的除法,在计算过程中要先确定符号,再根据法则进行运算.2.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.若直角三角形的三边长为偶数,则这三边的边长可能是()A.3,4,5B.6,8,10C.7,24,29D.8,12,20【考点】勾股数.【分析】判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、3,4,5都是奇数,选项错误;B、∵62+82=102,∴三角形是直角三角形;C、7,24,29中7和29是奇数,故选项错误;D、∵82+122=208,202=400,∴82+122≠202,∴三角形不是直角三角形.故选B.【点评】本题考查了勾股定理的逆定理,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()A.B.C.D.【考点】函数的图象.【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,因此反映到图象上应选B.故选:B.【点评】本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.5.天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于()A.教室地面的面积B.黑板面的面积C.课桌面的面积D.铅笔盒盒面的面积【考点】数学常识.【分析】首先算出44万平方米的百万分之一大约是多少,然后与选择项比较即可.【解答】解:44万平方米=440000平方米,440000×=0.44平方米,不足半平方米,应是课桌面的面积.故选C.【点评】解决本题的关键是把天安门广场的面积进行合理换算,得到相应的值.6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.【考点】剪纸问题.【专题】操作型.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.7.下列说法错误的是()A.近似数0.2300有四个有效数字B.近似数1.6与1.60的意义不同C.近似数1.2万精确到十分位D.近似数6950精确到千位是7×103【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.【解答】解:A、有效数字有2、3、0、0四个,正确;B、1.6精确到十分位,1.60精确到百分位,正确;C、1.2万精确到千位,不是十分位,错误;D、近似数6950精确到千位是7×103,正确.故选C.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.8.如图,在△ABC中,AB的垂直平分线DE,AD=6,△AEC的周长为15,那么△ABC的周长为()A.15B.21C.27D.33【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AE=BE,AB=2AD=12,根据△AEC的周长为15求出AC+BC=15,即可求出答案.【解答】解:∵AB的垂直平分线DE,AD=6,∴AB=2AD=12,AE=BE,∵△AEC的周长为15,∴AE+EC+AC=15,∴BE+EC+AC=15,∴BC+AC=15,∴△ABC的周长=AC+BC+AB=15+12=27,故选C.【点评】本题考查了线段垂直平分线性质的应用,能运用线段垂直平分线性质进行推理是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.9.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮同学随机地在大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是()A.B.C.D.【考点】几何概率.【分析】根据几何概率的意义,求出小正方形的面积,再求出大正方形的面积,算出其比值即可.【解答】解:根据题意分析可得:正方形ABCD边长为=,故面积为5;阴影部分边长为2﹣1=1,面积为1;则针扎到小正方形(阴影)区域的概率是即两部分面积