第二章1、晶体有哪些宏观特性?答:晶体的有序性、各向异性、周期性、对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。说明晶体宏观特性是微观特性的反映2、什么是空间点阵?答:晶体可以看成由相同的格点在三维空间作周期性无限分布所构成的系统,这些格点的总和称为点阵(布拉菲点阵)。3、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。4、试述固体物理学原胞和结晶学原胞的相似点和区别。答:(1)固体物理学原胞(简称原胞)构造:取一格点为顶点,由此点向近邻的三个格点作三个不共面的矢量,以此三个矢量为边作平行六面体即为固体物理学原胞。特点:格点只在平行六面体的顶角上,面上和内部均无格点,平均每个固体物理学原胞包含1个格点。它反映了晶体结构的周期性。是最小单位。(2)结晶学原胞(简称晶胞)构造:使三个基矢的方向尽可能地沿着空间对称轴的方向,它具有明显的对称性和周期性。特点:结晶学原胞不仅在平行六面体顶角上有格点,面上及内部亦可有格点。其体积不一定最小,是固体物理学原胞体积的整数倍。反应对称性。5、晶体的7大晶系6、答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。立方:简单立方、体心立方、面心立方7.密堆积结构包含哪两种?各有什么特点?答:(1)六角密积第一层:每个球与6个球相切,有6个空隙,如编号1,2,3,4,5,6。第二层:占据1,3,5空位中心。第三层:在第一层球的正上方形成ABABAB······排列方式。六角密积是复式格,其布拉维晶格是简单六角晶格。(2)立方密积第一层:每个球与6个球相切,有6个空隙,如编号为1,2,3,4,5,6。第二层:占据1,3,5空位中心。第三层:占据2,4,6空位中心,按ABCABCABC······方式排列,形成面心立方结构,称为立方密积。8.倒格子与正格子(5个性质)9.晶向指数、晶面指数、密勒指数10.等效晶向与等效晶面第三章1、什么是晶体的结合能,按照晶体的结合力的不同,晶体有哪些结合类型及其结合力是什么力?答:晶体的结合能就是将自由的原子(离子或分子)结合成晶体时所释放的能量。结合类型:离子晶体—离子键分子晶体—范德瓦尔斯力共价晶体—共价键金属晶体—金属键氢键晶体—氢键2、原子间的排斥力主要是什么原因引起的?库仑斥力与泡利原理引起的3.金属晶体的特点、一般金属晶体的结构,最大配位数答:特点:良好的导电性和导热性,较好的延展性,硬度大,熔点高。金属性的结合方式导致了金属的共同特性。金属结合中的引力来自于正离子实与负电子气之间的库仑相互作用,而排斥力则有两个来源,由于金属性结合没有方向性要求的缘故,所以金属具有很大的塑性,即延展性较好。金属晶体多采用立方密积(面心立方结构)或六角密积,配位数均为12;少数金属为体心立方结构,配位数为8。4、为什么分子晶体是密堆积结构?答:由于范德瓦耳斯力引起的吸引能与分子间的距离r的6次方成反比,因此,只有当分子间的距离r很小时范德瓦耳斯力才能起作用。而分子晶体的排斥能与分子间的距离r的12次方成反比,因此排斥能随分子间的距离增加而迅速减少。范德瓦耳斯力没有方向性,也不受感应电荷是否异同号的限制,因此,分子晶体的配位数越大越好。配位数越大,原子排列越密集,分子晶体的结合能就越大,分子晶体就越稳定,在自然界排列最密集的晶体结构为面心立方或六方密堆积结构。5、一维单、双原子链振动模型与色散关系(求解、结论)6、玻恩卡门条件答:(1)方便于求解原子运动方程.(2)与实验结果吻合得较好.玻恩卡门条件是晶格振动理论的前提条件.实验测得的振动谱与理论相符的事实说明,玻恩卡门周期性边界条件是目前较好的一个边界条件.7、什么叫格波?答:晶格中的原子振动是以角频率为ω的平面波形式存在的,这种波就叫格波。8、为什么把格波分为光学支与声学支?答:因为晶格振动波矢为N,格波支数为mp,这其中,m支为声学支,m(p-1)支为光学支。9、长光学支格波与长声学支格波本质上有何差别?答:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.10、什么叫声子?与光子有何区别?答:将格波的能量量子(hw)叫声子。声子和光子的区别:光子是一种真实粒子,它可以在真空中存在;但声子是人们为了更好地理解和处理晶格集体振动设想出来的一种粒子,它不能游离于固体之外,更不能跑到真空中,离开了晶格振动系统,也就无所谓声子,所以,声子是种准粒子。声子和光子一样,是玻色子,它不受泡利不相容原理限制,粒子数也不守恒,并且服从玻色-爱因斯坦统计。11、爱因斯坦模型、为什么爱因斯坦模型计算的热容在低温下与实验值不符?答:爱因斯坦对晶格振动采用了一个极简单的假设,即晶格中的各原子振动都是独立的,这样所有原子振动都有同一频率。按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率属于光学支频率.但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波.也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.12.德拜模型、为什么温度很低时,德拜近似与实验符合较好,爱因斯坦近似与实验结果的偏差增大?为什么德拜近似还不能与实验完全符合?答:在极低温下,不仅光学波得不到激发,而且声子能量较大的短声学格波也未被激发,得到激发的只是声子能量较小的长声学格波.长声学格波即弹性波.德拜模型只考虑弹性波对热容的贡献.因此,在极低温下,德拜模型与事实相符,自然与实验相符.13.晶体中波矢数目、原胞数目、自由度数之间的关系(n,l,N)15.在利用能带理论计算晶体能带时,固体是由大量原子组成,每个原子又有原子核和电子,实际上是要解多体问题的薛定鄂方程,而我们要把多体问题转化为单电子问题,需要对整个系统进行简化,试叙述需要哪些简化近似?答:首先应用绝热近似,由于电子质量远小于离子质量,电子的运动速度就比离子要大得多,故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适应离子的运动。第二个近似是平均场近似,在多电子系统中,可把多电子中的每一个电子看作在离子场及其他电子产生的平均场中运动这种考虑叫平均场近似。第三个近似是周期场近似,每个电子都在完全相同的严格周期性势场中运动,因此每个电子的运动都可以单独考虑。16.布洛赫函数、布洛赫定理与布洛赫电子(周期势场)17.近自由电子模型。答:该模型假设晶体势很弱,晶体电子的行为很像是自由电子,我们可以在自由电子模型结果的基础上用微扰方法去处理势场的影响,这种模型得到的结果可以作为简单金属价带的粗略近似。18.紧束缚电子模型。答:原子势很强,晶体电子基本上是围绕一个固定电子运动,与相邻原子存在的很弱的相互作用可以当作微扰处理,所得结果可以作为固体中狭窄的内壳层能带的粗略近似。19.能带理论(允带、禁带、有效质量、布里渊区、费米能级)