1.1给定三个矢量、AGBG和C如下:G23xyzAeee=+−GGGG,4yzBee=−+GGG,52xzCee=−GGG,求:(1);(2)AeGAB−GG;(3)AB⋅GG;(4)ABθ;(5)AG在BG上的分量;(6);(7)AC×GG()ABC⋅×GGG和()ABC×⋅GGG;(8)()ABC××GGG和()ABC××GGG。解:(1)222231214141412(3)xyzAxyeeeAeeeA+−===+−++−GGGGGGGG3zeG(2)(23)(4)64xyzyzxyzABeeeeeeee−=+−−−+=+−=GGGGGGGGGG5311(3)(23)(4)xyzyzABeeeee⋅=+−⋅−+=−GGGGGGG(4)由1111cos1417238ABABABθ⋅−===−×GGGG,得11arccos()135.5238ABθ=−=D(5)AG在BG上的分量11cos17BABABAABθ⋅===−GGGGG(6)12341310502xyzxyzeeeACeee×=−=−−−−GGGGGGGG(7)因为041852502xyzxyzeee0BCee×=−=++−GGGGGeGGG,12310041xyz4xyzeeeABeee×=−=−−−−GGGGGGGG所以,()(23)(8520)4xyzxyzABCeeeeee⋅×=+−⋅++=−2GGGGGGGGG()(104)(52)4xyzxzABCeeeee×⋅=−−−⋅−=−2GGGGGGGG(8)()1014240502xyz5xyzeeeABCeee××=−−−=−+−GGGGGGGGG()12355448520xyzxyzeeeABCeee××=−=−−GGGGGG11GGG1.2三角形的三个顶点为1(0,1,2)P−、2(4,1,3)P−和。3(6,2,5)P(1)判断是否为一直角三角形;(2)求三角形的面积。123PPPΔ解:(1)三个顶点、1(0,1,2)P−2(4,1,3)P−和的位置矢量分别为3(6,2,5)P12yzree=−GGG,243xyzreee=+−GGGG,3625xyzreee=++GGGG则12214xzRrree=−=−GGGGG,233228xyzRrreee=−=++GGGGGG,311367xyzRrreee=−=−−−GGGGGG由此可得1223(4)(28)0xzxyzRReeeee⋅=−⋅++=GGGGGGG所以,123PPPΔ为一直角三角形。(2)三角形的面积12231223111176917.13222SRRRR=×=×=×=GGGG1.3求点到点的距离矢量'(3,1,4)P−(2,2,3)P−RG及RG的方向。解:点和点的位置矢量分别为'(3,1,4)P−(2,2,3)P−'34Pxyzreee=−++GGGG,223Pxyzreee=−+GGGG则''53PPPPxyzRRrree==−=−−GGGGGGGe且'PPRG与x、、yz轴的夹角分别为''5arccosarccos32.3135xPPxPPeRRφ⎛⎞⋅⎛⎞⎜⎟==⎜⎟⎜⎟⎝⎠⎝⎠DGGG=''3arccosarccos120.4735yPPyPPeRRφ⎛⎞⋅−⎛⎞⎜⎟===⎜⎟⎜⎟⎝⎠⎝⎠DGGG''1arccosarccos99.7335zPPzPPeRRφ⎛⎞⋅−⎛⎞⎜⎟==⎜⎟⎜⎟⎝⎠⎝⎠DGGG=41.4给定两矢量23xyzAeee=+−GGGG和456xyzBeee=−+GGGG,求它们之间的夹角和在AGBG上的分量。解:22223(4)29A=++−=G,22245677B=++=G(234)(456)31xyzxyzABeeeeee⋅=+−⋅−+=−GGGGGGGG故与AGBG之间的夹角为31arccosarccos1312977ABABABθ⎛⎞⋅−⎛⎞⎜⎟==⎜⎟⎜⎟×⎝⎠⎝⎠DGGGG=AG在BG上的分量为313.53277BBAAB−=⋅==−GGG1.5给定两矢量234xyzAeee=+−GGGG和64xyzBeee=−−+GGGG,求AB×GG在xyzCeee=−+GGGG上的分量。解:23413221641xyzxyzeeeABeee×=−=−++−−GGGGGGGG0()(132210)()25xyzxyzABCeeeeee×⋅=−++⋅−+=−GGGGGGGGG2221(1)13C=+−+=G所以,AB×GG在上的分量为CG()25()14.433CABCABC×⋅×==−=−GGGGGG1.6证明:如果ABAC⋅=⋅GGGG和ABAC×=×GGGG,则BC=GG。证:由,得ABAC×=×GGGG)()(AABAAC××=××GGGGGG,即()()()()ABAAABACAAAC⋅−⋅=⋅−⋅GGGGGGGGGGGGG由于,于是得到()ABAC⋅=⋅GGG()AABAAC⋅=⋅GGGGGG所以,BC=GG1.7如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设AG为一已知矢量,pAX=⋅GG而PAX=×GGG,p和PG已知,试求XG。解:由,有PAX=×GGG()()()()APAAXAXAAAXpAAAX×=××=⋅−⋅=−⋅GGGGGGGGGGGGGGG故得2pAAPpAAPXAAA−×−×==⋅GGGGGGGGG1.8在圆柱坐标系中,一点的位置由2(4,,3)3π定出,求该点在:(1)直角坐标系中的坐标;(2)球坐标系中的坐标。解:(1)在直角坐标系中,224cos()2,4sin()23,333xyzππ==−===故该点的直角坐标为(2,23,3)−。(2)在球坐标系中,222435,arctan(4/3)53.1,rad1203rπθφ=+=====DD故该点的球坐标为(5。,53.1,120)DD1.9用球坐标表示的场225rEer=GG。(1)求在直角坐标中点(3处的,4,5)−−EG和xE;(2)求在直角坐标中点(3处,4,5)−−EG与矢量22xyzBeee=−+GGGG构成的夹角。解:(1)在直角坐标系中(3点处,,4,5)−−222(3)4(5)52r=−++−=,故22512rEer==GG又在直角坐标系中(3点处,,4,5)−−345xyzreee=−+−GGGG,所以,233425251025xyzreeeEerrr−+−===GGGGGG故3320102xxEeE−=⋅==−GG2(2)2222(2)1B=+−+=G3在直角坐标中(3点处,4,5)−−34519(22)102102xyzxyzeeeEBeee−+−⋅=⋅−+=−GGGGGGGG故,与EGBG构成的夹角为19/(102)arccosarccos153.63/2EBEBEBθ⎛⎞⎛⎞⋅⎜⎟==−=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠DGGGG1.11已知标量函数,求在点(2,3,1)处沿指定方向2uxyz=u34505050lxyzeeee=++GGGG5的方向导数。解:2222()()()2xyzxyuexyzexyzexyzexyzexzexyxyz∂∂∂∇=++=++∂∂∂GGGGG2zG故沿指定方向34505050lxyzeeee=++GGGG5的方向导数为22645505050luxyzxzuel∂=∇⋅=++∂Gxy点(2,3,1)处沿的方向导数值为leG(2,3,1)36166011250505050ul∂=++=∂1.12已知标量函数。(1)求22223326uxyzxyz=+++−−u∇;(2)在哪些点上等于0?u∇解:(1)(23)(42)(66)xyzxyzuuuueeeexeyezxyz∂∂∂∇=++=++−+−∂∂∂GGGGGG(2)由(23)(42)(66)0xyzuexeyez∇=++−+−=GGG,得3/2,1/2,1xyz=−==1.13方程222222xyzuabc=++给出一椭球族。求椭球表面上任意点的单位法向矢量。解:由于222222xyzxyzueeeabc++GGG∇=,2222222xyzuabc⎛⎞⎛⎞⎛⎞∇=++⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠故椭球表面上任意点的单位法向矢量为22222222nxyzu2xyzxyzeeeeabcabcu∇⎛⎞⎛⎞⎛⎞==++++⎜⎟⎜⎟⎜⎟∇⎝⎠⎝⎠⎝⎠GGGG⎛⎞⎜⎟⎝⎠1.14利用直角坐标系,证明()uvuvvu∇=∇+∇证:在直角坐标系中,()()()()xyzxyzxyzxyzvvvuuuuvvuueeeveeexyzxyzvuvuvueuveuveuvxxyyzuvuvuveeexyzuv⎛⎞⎛∂∂∂∂∂∂∇+∇=+++++⎜⎟⎜∂∂∂∂∂∂⎝⎠⎝⎛⎞∂∂∂∂∂∂⎛⎞⎛⎞=+++++⎜⎟⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠⎝⎠∂∂∂=++∂∂∂=∇GGGGGGGGGGGGz⎞⎟⎠dS1.15一个球面S的半径为5,球心在原点上,计算(3sin)rSeθ⋅∫GGv的值。解:(3sin)(3sin)rrSSedSeeθθ⋅=⋅∫∫GGGvvrdSG222003sin5sin75ddππθθθφπ=×=∫∫1.16已知矢量,试确定常数、b、c,使为无源场。222()()(2xyxEexaxzexybyezzczxxyz=++++−+−GGGG)aEG解:由,得(2)(2)(122)0Exazxybzcxxy∇⋅=++++−+−=G2,1,2abc==−=−1.17在由5ρ=、和围成的圆柱形区域,对矢量0z=4z=22zAeezρρ=+GGG验证散度定理。证:在圆柱坐标系中,221()(2)3Azzρρρρρ2∂∂∇⋅=+=+∂∂G所以,425000(32)1200VAdVdzddπφρρρπ∇⋅=+=∫∫∫∫G又SSSSAdSAdSAdSAdS⋅=⋅+⋅+⋅∫∫∫∫GGGGGGGGv上下柱面252500004024005252420000()524551200zzzzAeddAeddAedzddddzdπππρρππρρφρρφφρρφφπ====⋅+⋅−+⋅=×+×=∫∫∫∫∫∫∫∫∫∫GGGGGG故有1200VSAdVAdSπ∇⋅==⋅∫∫GGGv1.18(1)求矢量的散度;(2)求2222224xyzAexexyexyz=++GGGG3A∇⋅G对中心在原点的一个单位立方体的积分;(3)求AG对此立方体表面的积分,验证散度定理。解:(1)22222322()()(24)2272xxyxyzAxxyxyzxyz∂∂∂∇⋅=++=++∂∂∂G22(2)A∇⋅G对中心在原点的一个单位立方体的积分为1/21/21/222221/21/21/21(2272)24VAdVxxyxyzdxdydz−−−∇⋅=++=∫∫∫∫G(3)对此立方体表面的积分为AG221/21/21/21/21/21/21/21/2221/21/21/21/2221/21/21/21/231/21/21/222221/21/211/21122112211242422SAdSdydzdydzxdxdzxdxdzxydxdyxy−−−−−−−−−−−−⎛⎞⎛⎞⋅=−−⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞⎛⎞+−−⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞⎛⎞+−⎜⎟⎜⎟⎝⎠⎝⎠∫∫∫∫∫∫∫∫∫∫∫∫GGv−31/2/2124dxdy=∫故有124VSAdVAdS∇⋅==⋅∫∫GGGv1.19计算矢量r对一个球心在原点、半径为a的球表面的积分,并求对球体积的积分。Gr∇⋅G解:22300sin4rSSrdSredSdaadaππφθθπ⋅=⋅==∫∫∫∫GGGGvv又在球坐标系中,21()rrrrr3∂∇⋅==∂G,所以2230003sin4aVrdVrdrddaππθθφπ∇⋅==∫∫∫∫G1.20在球坐标系中,已知矢量rAeaebecθφ=++GGGG,其中、b和均为常数。(1)问矢量是否为常矢量;(2)求acAGA∇⋅G和A∇×G。解:(1)222AAAAabc==⋅=++GGG,即矢量rAeaebecθφ=++GGGG的模为常数。将矢量rAeaebecθφ=++GGGG用直