经典二次函数图像特征与a、b、c、△符号的关系

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1图像特征与a、b、c、△符号的关系11、已知二次函数2yaxbxc,如图所示,若0a,0c,那么它的图象大致是()yyyyxxxxABCD2、已知二次函数2yaxbxc的图象如图所示,则点(,)acbc在()A.第一象限B.第二象限C.第三象限D.第四象限3、已知二次函数2yaxbxc=++的图象如下,则下列结论正确的是()A0abB0bcC0abc++D0abc-+4、二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a0;②c0;③b2-4ac0,其中正确的个数是()A.0个B.1个C.2个D.3个5、二次函数y=ax2+bx+c的图像如图1,则点M(b,ca)在()A.第一象限B.第二象限C.第三象限D.第四象限6、二次函数2yaxbxc的图象如图所示,则()A、0a,240bacB、0a,240bacC、0a,240bacD、0a,240bacyx027、已知函数y=ax+b的图象经过第一、二、三象限,那么y=ax2+bx+1的图象大致为()8、已知函数cbxaxy2的图象如图所示,则下列结论正确的是()A.a>0,c>0B.a<0,c<0C.a<0,c>0D.a>0,c<09、二次函数2(0)yaxbxca的图象如图所示,则下列说法不正确的是()A.240bacB.0aC.0cD.02ba10、二次函数y=ax2+bx+c的图象如图,则下列各式中成立的个数是()(1)abc<0;(2)a+b+c<0;(3)a+c>b;(4)a<-2b.A.1B2C.3D.411、已知二次函数的图象如图所示,有下列5个结论:①;②;③;④;⑤,(的实数)其中正确的结论有()A.2个B.3个C.4个D.5个12、如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().A②④B①④C②③D①③313、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①c0,②b0,③4a+2b+c0,④(a+c)2b2.其中正确的有()A.1个B.2个C.3个D.4个14、如图,抛物线)0(2acbxaxy的对称轴是直线1x,且经过点P(3,0),则cba的值为()A.0B.-1C.1D.215、已知:二次函数220yaxbxaba的图像为下列图像之一,则a的值为()A.-1B.1C.-3D.-416、已知二次函数2(0)yaxbxca的图象如图所示,则下列结论:①a,b同号;②当1x和3x时,函数值相等;③40ab④当2y时,x的值只能取0.其中正确的个数是()A.1个B.2个C.3个D.4个17、已知二次函数2yaxbxc(0a)的图象如图所示,有下列结论:①240bac;②0abc;③80ac;④930abc.其中,正确结论的个数是()A.1B.2C.3D.418、已知二次函数y=ax2+bx+c的图象,如图所示,下列结论:①a+b+c0;②a-b+c0;③abc0;④2a-b=0,其中正确结论的个数是()A.1B.2C.3D.419、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2y–133OxP1yxO1x124时,x的值只能取0.其中正确的个数是()A.1个B.2个C.3个D.4个20、已知:二次函数220yaxbxaba的图像为下列图像之一,则a的值为()A.-1B.1C.-3D.-421、已知一次函数yaxc与2yaxbxc,它们在同一坐标系内的大致图象是()22、函数2ykxk和(0)kykx在同一直角坐标系中图象可能是图中的()23、函数y=ax+b与y=ax2+bx+c的图象如图所示,则下列选项中正确的是()A.ab0,c0B.ab0,c0C.ab0,c0D.ab0,c024、已知反比例函数xky的图象如右图所示,则二次函数222kxkxy的图象大致为()yOxyOxyOxyOxyOxA.B.C.D.xOy5二次函数专题训练1——图像特征与a、b、c、△符号的关系21、)0(abbaxy不经过第三象限,那么bxaxy2的图象大致为()yyyyOxOxOxOxABCD2、已知函数y=ax2+ax与函数,则它们在同一坐标系中的大致图象是()3、在同一坐标系中,函数)0(2bcbxaxycaxy和的图象大致是()4、函数2yaxbyaxbxc和在同一直角坐标系内的图象大致是()5、在同一直角坐标系中,函数ymxm和222ymxx(m是常数,且0m)的图象可能..是()OxyDAOxyCOxyOxyBxyOA.xyOB.xyOC.xyOD.66、次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=(b+c)x在同一坐标系中的大致图象可能是()A.B.C.D.7、在同一坐标系中一次函数和二次函数的图象可能为()8、如图,二次函数y=ax2+bx+c的图象与x轴相交于两个点,根据图象回答:(1)b_______0(填“、”、“”、“=”);(2)当x满足______________时,ax2+bx+c0:(3)当x满足______________时,ax2+bx+c的值随x增大而减小.9、如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3③a+b+c>0④当x>1时,y随x的增大而增大。正确的说法有_____________。(把正确的答案的序号都填在横线上)10、二次函数y=ax2+bx+c的图象如图8所示,且P=|a-b+c|+|2a+b|,Q=|a+b+c|+|2a-b|,则P、Q的大小关系为.

1 / 6
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功