1目录第一讲加减法的巧算(一)…………………2第二讲加减法的巧算(二)…………………7第三讲乘法的巧算…………………………12第四讲配对求和………………16第五讲找简单的数列规律……………………17第六讲图形的排列规律………………………19第七讲数图形…………………………23第八讲分类枚举……………………………26能力测试(一)……………………………26第九讲填符号组算式………………………28第十讲填数游戏……………………31第十一讲算式谜(一)……………………………35第十二讲算式谜(二)……………………………37第十三讲火柴棒游戏(一)…………………………39第十四讲火柴棒游戏(二)……………………40第十五讲从数量的变化中找规律……………………45第十六讲数阵中的规律……………………45第17讲时间与日期……………第18讲推理……………能力测试(二)………………………………63第19讲循环………………第20讲最大和最小…………………………第21讲最短路线…………………………2第22讲图形的分与合…………………第23讲格点与面积……………………第24讲一笔画………………………阶段测试(三)……………………第25讲移多补少与求平均数………………第26讲上楼梯与植树………………第27讲简单的倍数问题……………………第28讲年龄问题……………………………第29讲鸡兔同笼问题……………………第30讲盈亏问题…………………第31讲还原问题……………………第32讲周长的计算……………………第33讲等量代换……………………第34讲一题多解……………………能力测试(四)………………………………第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。选手们为争夺冠军,都在舞台上发挥着自己的最好水平。台下的工作人员小熊和小白兔正在统计着最后的得分。由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。观众的情绪也影响着两位分数统计者。只见分数一到小白兔手中,就像变魔术般地得出了答案。等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。你可以试一试。”小熊照着小白兔说的去做,果然既快又对。这下小熊明白了,掌握了速算的技巧,在工作和生活中的作用很大。它不仅可以节省运算时间,更主要的是提高了我们的工作效率。3我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。下面介绍在整数加减法运算中常用的几种速算方法。例题与方法例1计算:(1)2458+503(2)574+798例2.计算:(1)956-597(2)3475-308例3用简便方法计算:(1)783+25+175(2)2803+(2178+5497)+4722例4.计算:999+99+9练习与思考。1.计算下面各题,并口述解题思路。(1)256+503(2)327+798(3)379-297(4)467-103(5)2497+183(6)3498-4382.直接写出得数(1)376+174+24(2)864+(673+136)+2274(3)1324―875―125(4)3842―1567―433―8423.计算下列各题。(1)99999+9999+999+99+9(2)7+7+5+2+7第二讲加减法的巧算(二)我们已经知道了有关简单加减法的巧算方法。对于稍复杂的加减法,如何进行巧算呢?这一讲,我们就来讨论这个问题。例题与方法1.计算:1654-(54+78)2.计算:2937-493-2073.计算:657897-657323+2974.计算:995+996+997+998+9995.计算:1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-9练习与思考1.下列各题。(1)538-194+162(2)497+334-297(3)7523+(653-1523)(4)9375-(2103+3375)(5)874―(457―126)(6)3467―253―174―47―1262.计算下列各题。(1)657-(269+257)+169(2)77+79+79+80+81+83+84(3)1000―81―19―82―18―83―17―84―16―85―15―84―16―83―17―82―18―81―195(4)901+902+905+898-907+908-895(5)997+3―(997―3)第4讲配对求和高斯是德国著名的数学家、物理学家和天文学家,从小就聪明过人。他8岁时,老师给他和班上的同学出了一道题:1+2+3+4+…+99+100=?8岁的小高斯很快报出了得数:5050。这个答案完全正确!最让老师吃惊的是,小高斯是计算速度如此快小高斯用什么办法算得这么的呢?原来,他用了一种巧妙的方法——配对求和。这种方法正是我们要向读者小朋友介绍的。例题与方法1.计算:1+2+3+4+5+6+7+8+9+102.计算:11+12+13+14+15+16+17+18+193.计算:101+102+103+104+105+106+107+108+109+1104.有一垛电线杆叠堆在一起,一共有20层。第1层有12根,第2层有13根……下面每层比上层多一根(如下图)。这一垛电线杆共有多少根?练习与思考1.计算:1+2+3+4+…+18|+192.计算:1+2+3+4+…+29+303.计算:2+4+6+8+…+98+1004.计算:40+41+42+…+6165.计算:13+14+15+…+276.有20个数,第1个数是9,以后每个数都比前一个数大3。这20个数连加,和是多少?7.有一串数,第1个数是5,以后每个数比前一个数大5,最后一个数是90。这串数连加,和是多少?8.一堆圆木共15层,第1层有8根,下面每层比上层多1根。这堆圆共多少根?9.省工人体育馆的12区共有20排座位,呈梯形。第1排有10个座位,第2排有11个座位,第3排有12个座位,……这个体育馆的12区共有多少个座位?10.有一个挂钟,一个点钟敲2下,三点钟敲3下……十二点敲12下,每逢分种指向6时敲1下。问这个挂种一昼夜共敲多少下?第5讲找简单数列的规律在日常生活中,我们经常会碰到一定排列的数,比如:一列自然数:1,2,3,4,5,6,7,8,…年份:1980,1981,1982,1983,1984,1985,1986,…某工厂全年产量(按月份排):400,450,500,450,500,550,…像上面的这些例子,都是按某种法则排列的一列数,这样的一列数就叫做数列。数列里的每一个数都叫做这个数列的项。其中第1个数叫做数列的第1项,第2个数叫做数列的第2项,第n个数列叫做数列的第n个数叫做数列的第n项。比如在年份数列中,第4项是1983,第7项就是1986。研究数列的目的是为了发现数列中的数排列的规律并依据这个规律来解决问题。例题与方法例1找出下面数列的规律,并根据规律在括号里填出适当的数。(1)3,6,9,12,(),18,21(2)28,26,24,22,(),18,16(3)60,63,68,75,(),()(4)180,155,131,108,(),()(5)196,148,108,76,52,()7(6)6,1,8,3,10,5,12,7,(),()(7)0,1,1,2,3,5,8,(),()(8)10,98,15,94,20,90,(),()例2在下面数列中填出合适的数。(1)1,3,9,27,(),243(2)1,2,6,24,120,(),5040(3)1,1,3,7,13,(),31(4)0,3,8,15,24,(),48,63例3在下面数列的每一项由3个数组成的数组成的数表示,它们依次是:(1,5,9),(2,10,18),(3,15,27),……。问第50个数组内三个数的和是多少?例4先找规律,再填数。1×9+2=1112×9+3=111123×9+4=11111234×9+5=()12345×9+6=()123456×9+7=()1234567×9+8=()例5第6讲图形的排列规律找规律是解决数学问题的一种重要手段。而发现规律既需要敏锐的观察力,又需要严密的逻辑推理能力。同学们一定听说过福尔摩斯这个人吧,他是世界著名的大侦。我们从小说和电视剧中看到福尔摩斯的“破案”简值神极了,什么疑难案件,他都能把业超级大国去肪分析清楚。他靠的不仅是渊博的知识,还有细心敏锐的观察与严密的逻辑推理。这一讲将为你提供很多图形,它们在某一个方面,比如颜色、形状、大小、结构、位置或繁难等有些共同的特征或变化规律,我们要学会通过观察找规律,并根据规律来推断结果。例题与方法例1下面哪个图形和其他几个不一样,请你找出来,并打上“√”。(1)8例2按顺序观察下图的变化规律,想一想在带“?”处应选择哪一个图形?可供选项:例3仔细观察下面的三个图形,然后选择一个合适的图形填在“?”处。(2)(3)(4)?①②③④9例4根据等号左边两个图形的变换关系,推断出“?”处应选择第几号图形?例5下面的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形。练习与思考1.选择合适的图形,将图号填入虚线框内。(1)=?①②③④(1)(2)(3)(4)(5)(6)(7)(8)(9)???10(2)(3)2.仔细观察下面图形,按其变化规律在“?”处填上合适的图形。(1)(2)①②③④①②③④??11(3)3.根据左边图形的关系,画出右边图形的另一半。(1)(2)(3)4.从所给的6个图形中,选出一个适当的图形,将它的编号填入“?”处。(1)(2)?①②③④⑤12第七讲数图形晚饭过后,妈妈给小明出了一道“试眼力”的题目:数数窗户上一共有几个正方形。小明看,立刻回答:“窗户上有6个正方形。”妈妈笑了,爷爷在一旁也笑了,小明给弄了个“丈二和尚摸不着头脑”。小朋友,你知道小明的爷爷妈妈为什么笑吗?小明数昨难道不对吗?如果不对,那么窗户上窨有几个正方形呢?下面我们就一起来研究数图形的问题。例题与方法例1.下图中有多少条线段?例2.下面图形中有几个角?例3.下图中共有多少个三角形?例4.右图中有多少个正方形?①②③④⑤ABCDEODCBAABEDC13例5.数一数图中共有多少个三角形?练习与思考1.下图中各有多少条线段?(1)(2)(3)2.下图中有多少个角?ABABCDABCABDDBCABCDEFABCDEFFGHIABCEFDEFDABCO143.下图中各有多少个三角形?(1)(2)(3)(4)4.下图中各有多少个长方形?(1)(2)(3)5.下图中有多少个正方形?第8讲分类枚举小芳为了给灾区儿童捐款,把储蓄罐里的钱全拿了出来。她想数数有多少钱。小朋友,你知道小芳是怎么数的吗?小芳是个聪明的孩子,她把钱按1分、2分、5分、1角、2角、5角、1元等分类去数。所以很快就好了。小芳数钱,用的就是分类枚举的方法。这是一种很重要的思考方法,在很多问题的思考过程中都发挥了很大的作用。下面就让我们一起来看看它的本领吧!例题与方法15例1.右图中有多少个三角形?例2.右图中有多少个正方形?例3.在算盘上,用两粒珠子可以表示几个不同的三位数?分别是哪几个数?例4.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?例5.往返于南京和上海之间的泸宁高速列车沿途要停靠常州、无锡、苏州三站。问:铁路部门要为这趟车准备多少种车票?例6.小明有面值为3角、5角的邮票各两枚。他用灾些邮票能付多少种不同的邮资(寄信时