温控器设计方案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

具节电调温控制器的设计方案电熨斗、电热水器及电烙铁等电热器具,在处于稳定高温状态时,若断续供电,它们的温度不会下降太多影响使用,但日积月累却能节约许多电能。如果再加上依据需要能对温度进行调节,节电效果就更为明显了。节电调温两用器就是为达到上述目的而设计的,它具有结构简单、体积小、价格低、使用方便和节电效果显著等特点,现介绍如下。1.电路工作原理节电调温两用器的电路,如图1所示,它是由电容降压稳压电源电路和占空比可调的时基电路所组成。图1在图中,电容C1、二极管D1、稳压二极管DW和电解电容C2,组成电容降压稳压电路,输出12V稳定的直流电压。IC为时基集成电路,与电阻R2、R3、电位器W和电容C3,组成占空比可调的自激多谐振荡器。其中二极管D2为充电引导管,二极管D3则是放电引导管,当电位器W活动臂滑向最右端时,占空系数Dy为:Dymax=t充/T=(1kΩ+10MΩ)/〔(10MΩ+1kΩ)+1kΩ〕≈99.99%当电位器W活动臂滑向最左端时,占空系数为:Dymin=t充/T=1kΩ/〔1kΩ+(10MΩ+1KΩ)〕≈0.01%而振荡周期T=0.693(10MΩ+2kΩ)×0.01×10-6是常数,不受电位器活动臂位置的影响。换句话说,调节占空比时,其振荡器的输出频率不变,保证了振荡器稳定的工作。这样,在电源接通后,电源通过电阻R2、二极管D2和电位器W的左半部分,向电容C3充电,由于C3尚来不及充电,故IC的②脚处于低电位,导致IC输出端③脚为高电平,使双向可控硅SCK被触发导通,插座CZ上有交流电压输出。当电容C3两端电压上升到电源电压的2/3时,IC被复位,即②脚呈高电位,③脚变低电平,双向可控硅SCK的控制极因失去触发电压而阻断,电源插座CZ断电。这时IC内部的放电管导通,电容C3上的充电电荷经电位器W的右半部分和二极管D3、电阻R3由⑦脚向地泄放,当C3上的电压低于电源电压的1/3时,IC又复位,③脚又呈高电平,双向可控硅SCK导通,电源插座CZ供电,电容器C3再次充电,电路工作周而复始。所以,改变电位器W活动臂的位置,即改变控制电路的占空比,这样就可改变电热器具供电间歇时间。就电路中所示的元件阻值,该电路的占空比在0.01%~99.99%之间连续可调。使用时,将电熨斗、电热水器、电烙铁等电热器具,插入插座CZ中,将电位器W活动臂滑到最右端,使占空比大于99%,开始接通电源。待电热器具达到稳定的高温时,将电位器W的活动臂向左滑动,使占空比减小,这样就可以做到既节约用电,又保证电热器具温度不下降。但电位器W活动臂不能向左滑动过多,若左移过多,占空比便过小,也就是间歇停电时间增长,会使电热器具温度下降,一般左移占空比不低于80%,电热器具就会保持恒定的高温。为了使用时调节电位器方便,可在盒面上刻出左移(即左旋)节电标记。当左旋电位器W,使占空比小于80%时,就起调温作用了,如果电源插座上接的是电饭煲,待饭煮熟后,大幅度地左旋电位器,使占空比减小(即停电间歇时间增长,供电时间减少),即节约用电、饭不会糊底,又可长时间使饭保温,这在寒冷的北方更有实用意义。所以,它又是个温度调节器,具有良好的调温作用。2.元件选择节电调温两用器的印刷电路,如图2所示。图中,IC为时基集成电路,可选用进口的NE555或国产的SL555,5G1555型时基集成电路。SCK为双向可控硅,在选用时,工作电压不低于600V,电流依据所接负载功率选定,一般在3~5A,如3CT3、3CT5或进口塑封带散热片式。图2D1~D4为半导体二极管,可选塑封式整流二极管,如1N4001或1N4004,价格便宜,体积也小。DW为稳压二极管,可选用2CW19-21。LED为发光二极管,用于插座CZ输出指示,可选任意型。R30Ω、1WR1500kΩ~1MΩR2、R31kΩR4200kΩW10MΩ电位器C10.47μF450VC2220μF~470μF450VC310μFC40.01μF由于电路采用电容降压稳压电源,工作时元件是带电的,安装时应做好绝缘,尤其是电位器的旋轴与旋钮,必须要进行良好的绝缘。(1)用NE555设计的恒温控制器的方案(2)本恒温控制器具有用途广泛、精度较高、造价低廉、装调容易等特点。工作原理恒温控制器由热敏电阻Rt1、Rt2、NE555时基电路、温度范围调整电阻RP1、RP2及控制执行机构组成,电路如图1所示。Rt1、RP1为上限温度检测电阻,Rt2、RP2为下限温度检测电阻。当温度下降时,②脚电位低于1/3Vcc时,③脚输出高电平,J吸合,LED2点亮,开始加热。当温度升高而使IC⑥脚电位高于2/3Vcc时,③脚输出低电平,J释放,断开受控“电热器”的电源,停止加热。元器件选择与制作元器件清单见下表。(3)编号(4)名称(5)型号(6)数量(7)Rt1、Rt2(8)热敏电阻(9)6.8K负温度系数(10)2(11)RP1、RP2(12)微调电阻(13)15K(14)2(15)R3、R4(16)电阻(17)470Ω(18)2(19)C(20)涤纶电容(21)0.01(22)1(23)LED(24)发光二极管(25)绿、红各1个(26)2(27)IC(28)时基集成电路(29)NE555(30)1(31)J(32)电磁继电器(33)电压6V电流参考电热器(34)1(35)调整时,首选应调整上限温度,把Rt1置于所要求的上限温度环境中(用温度计监测),过一分钟后(Rt1与环境达到热平衡),调RP1起到LED1刚好发光为止,反复多调几次,可先将②脚与地短接一下,使③脚输出高电平(LED1亮),这样便于观察翻转状态。然后调整下限温度,过程同上,调整RP2使红LED2亮,也要反复调整几次,可先将⑥脚与电源Vcc短接一下,以使③脚输出低电平,观察电路翻转状态。电路最好用小型稳压电源供电(可根据自己实际在本站电源技术一栏中选制一个)。该电路稍加修改,可作为超(高、低)温报警器。(36)恒温控制器高精度无温度阶跃区的恒温控制器电路图U1A,U1B的接入是为了便于调试并使差分放大器的输入阻抗尽可能平衡。Q1、Q2的be结串联作为温度传感器,由精密稳压集成电路U3(TL431)提供约2.5V的高稳定基准电压源为传感器及窗口电压比较器(U2C,U2D)和差分放大器(U1C)提供合适的参考基准输入。电压跟巡器U1D起缓冲隔离作用,分别将经U1C差分放大器放大后的温差电压Vd送到电压比较器U2B的同相输入端上,U2C的反相输入端接在由U2A等组成的锯齿波电压发生器的输出端上,在锯齿波电压低于Vd期间,U2B输出高电平,Q5饱和导通使接口电路U5得到输入电流信号,其输出端触发双向可控硅VS在市电过零时导通。负载得电工作而发热。培养箱内温度升高,LED3为一绿色高亮度发光二极管,其作用有三:1,为抵消因Q6可能出现的饱和压降过大而使Q5在超温时不能可靠的截止。因负载得电工作发热,培养箱内温度升高,与设定点的温度差减小,从而引起U1C输入的差分电压变小,U1C输出变小,U1D输出(Vd)亦变小,(在一个锯齿波周期内)U2B输出高电平时间减少,以致于培养箱内温度上升速度减慢,当培养箱内温度达到设定温度(37℃)时,此时,温差最小,Vd此时亦最小,负载得电时间最短。以致于培养箱内温度基本上无变化,负载所发热量与培养箱与环境热交换所散发的热量相当,从而维持培养箱内温度稳定在设定温度上。由于负载工作时间长短与温差密切相关(温差大时,Vd大负载得电工作时间就长产热量多,反之,负载工作时间就少,产热也少),而且传感器的输出经约100倍放大从而使得本电路的灵敏度和控制精度都比较高。基本上没有明显的温度阶跃。U2C,U2D为一窗口电压比较器,当培养箱内温度低于设定的报警下限温度时,U2C输出高电平,黄色发光二极管LED4被点亮,表示欠温状态,同时为报警声源集成电路U4提供工作电源使U4工作输出音频信号经Q7放大推动扬声器发声报警;而当某种原因使电路失控而致培养箱内温度升高超过设定报警温度的上限温度时,U2D输出高电平,一路使红色发光二极管LED5发光指示出超温状态,并为报警电路供电是扬声器发声报警;与此同时,经R17使Q6饱和导通,迫使Q5截止,切断U5的输入电流,使VS关断。负载失电停止工作以防培养箱内温度继续升高从而保护了培养箱内的培养物的安全。2,作为加热工作状态指示灯用;3,防止电路可能出现误动作.该装置的电路原理图请参见图,主要由热敏电阻、NE555时基电路、温度设定电位器、超小型继电器等元件组成。它利用热敏电阻作为温度传感器,由NE555时基集成电路作为控制元件。元件的选择与制作:图中的IC1可以选用市售任何型号的时基电路,比如NE555、SL555等等。在一般的电子市场中,非常好找而且售价极低。热敏电阻Rt必须选择正温度系数的品种,其外形呈小圆片深红色,阻值为470Ω。电容C1要求质量要好、漏电流要小,否则将导致暂态时间不准。RP选用任何型号的微调电位器,原则是体积越小越好,这样做的目的是为了充分减小该装置的体积。继电器K用任何直流工作电压为12V的小型或超小型继电器。其他电子元件没有什么特殊要求,参数按图中的标注选配即可。由于电路比较简单,印刷电路板可以到电子市场,选购那种万用印刷板。

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功