高中数学知识点总结第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxaaRxRn,且nN,那么x叫做a的n次方根.当n是奇数时,a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号na表示;0的n次方根是0;负数a没有n次方根.②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,0a.③根式的性质:()nnaa;当n为奇数时,nnaa;当n为偶数时,(0)||(0)nnaaaaaa.(2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmnaaamnN且1)n.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,mmmnnnaamnNaa且1)n.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsrsaaaarsR②()(0,,)rsrsaaarsR③()(0,0,)rrrabababrR【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0xyaa且1)a叫做指数函数图象1a01a定义域R01xayxy(0,1)O1y01xayxy(0,1)O1y值域(0,)过定点图象过定点(0,1),即当0x时,1y.奇偶性非奇非偶单调性在R上是增函数在R上是减函数函数值的变化情况1(0)1(0)1(0)xxxaxaxax1(0)1(0)1(0)xxxaxaxaxa变化对图象的影响在第一象限内,a越大图象越高;在第二象限内,a越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaNaa且,则x叫做以a为底N的对数,记作logaxN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log(0,1,0)xaxNaNaaN.(2)几个重要的对数恒等式log10a,log1aa,logbaab.(3)常用对数与自然对数常用对数:lgN,即10logN;自然对数:lnN,即logeN(其中2.71828e…).(4)对数的运算性质如果0,1,0,0aaMN,那么①加法:logloglog()aaaMNMN②减法:logloglogaaaMMNN③数乘:loglog()naanMMnR④logaNaN⑤loglog(0,)bnaanMMbnRb⑥换底公式:loglog(0,1)logbabNNbba且【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数log(0ayxa且1)a叫做对数函数图象1a01a定义域(0,)值域R过定点图象过定点(1,0),即当1x时,0y.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数函数值的变化情况log0(1)log0(1)log0(01)aaaxxxxxxlog0(1)log0(1)log0(01)aaaxxxxxxa变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数()yfx的定义域为A,值域为C,从式子()yfx中解出x,得式子()xy.如果对于y在C中的任何一个值,通过式子()xy,x在A中都有唯一确定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数()yfx的反函数,记作1()xfy,习惯上改写成1()yfx.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()yfx中反解出1()xfy;③将1()xfy改写成1()yfx,并注明反函数的定义域.(8)反函数的性质①原函数()yfx与反函数1()yfx的图象关于直线yx对称.②函数()yfx的定义域、值域分别是其反函数1()yfx的值域、定义域.③若(,)Pab在原函数()yfx的图象上,则'(,)Pba在反函数1()yfx的图象上.01xyO(1,0)1xlogayx01xyO(1,0)1xlogayx④一般地,函数()yfx要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数yx叫做幂函数,其中x为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,则幂函数的图象过原点,并且在[0,)上为增函数.如果0,则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当qp(其中,pq互质,p和qZ),若p为奇数q为奇数时,则qpyx是奇函数,若p为奇数q为偶数时,则qpyx是偶函数,若p为偶数q为奇数时,则qpyx是非奇非偶函数.⑤图象特征:幂函数,(0,)yxx,当1时,若01x,其图象在直线yx下方,若1x,其图象在直线yx上方,当1时,若01x,其图象在直线yx上方,若1x,其图象在直线yx下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)fxaxbxca②顶点式:2()()(0)fxaxhka③两根式:12()()()(0)fxaxxxxa(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求()fx更方便.(3)二次函数图象的性质①二次函数2()(0)fxaxbxca的图象是一条抛物线,对称轴方程为,2bxa顶点坐标是24(,)24bacbaa.②当0a时,抛物线开口向上,函数在(,]2ba上递减,在[,)2ba上递增,当2bxa时,2min4()4acbfxa;当0a时,抛物线开口向下,函数在(,]2ba上递增,在[,)2ba上递减,当2bxa时,2max4()4acbfxa.③二次函数2()(0)fxaxbxca当240bac时,图象与x轴有两个交点11221212(,0),(,0),||||||MxMxMMxxa.(4)一元二次方程20(0)axbxca根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)axbxca的两实根为12,xx,且12xx.令2()fxaxbxc,从以下四个方面来分析此类问题:①开口方向:a②对称轴位置:2bxa③判别式:④端点函数值符号.①k<x1≤x2xy1x2x0aOabx20)(kfkxy1x2xOabx2k0a0)(kf②x1≤x2<kxy1x2x0aOabx2k0)(kfxy1x2xOabx2k0a0)(kf③x1<k<x2af(k)<00)(kfxy1x2x0aOkxy1x2xOk0a0)(kf④k1<x1≤x2<k2xy1x2x0aO1k2k0)(1kf0)(2kfabx2xy1x2xO0a1k2k0)(1kf0)(2kfabx2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合xy1x2x0aO1k2k0)(1kf0)(2kfxy1x2xO0a1k2k0)(1kf0)(2kf⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数2()(0)fxaxbxca在闭区间[,]pq上的最值设()fx在区间[,]pq上的最大值为M,最小值为m,令01()2xpq.(Ⅰ)当0a时(开口向上)①若2bpa,则()mfp②若2bpqa,则()2bmfa③若2bqa,则()mfq①若02bxa,则()Mfq②02bxa,则()Mfp(Ⅱ)当0a时(开口向下)①若2bpa,则()Mfp②若2bpqa,则()2bMfa③若2bqa,则()Mfq①若02bxa,则()mfq②02bxa,则()mfp.xy0aOabx2pqf(p)f(q)()2bfaxy0aOabx2pqf(p)f(q)()2bfaxy0aOabx2pqf(p)f(q)()2bfaxy0aOabx2pqf(p)f(q)()2bfa0xxy0aOabx2pqf(p)f(q)()2bfa0xxy0aOabx2pqf(p)f(q)()2bfaxy0aOabx2pqf(p)f(q)()2bfaxy0aOabx2pqf(p)f(q)()2bfa0xxy0aOabx2pqf(p)f(q)()2bfaxy0aOabx2pqf(p)f(q)()2bfa0x