1.已知函数()ln(1)fxxax,(1)求函数()fx的单调递减区间(2)若1x,证明:11ln(1)1xxx解:1x'1(1)()11axafxaxx2分(1)0a'()0(1,)fx是增区间10(1,)aaa是增区间,1(,)aa是减区间0(1,)a是增区间0a时,减区间是1(,)aa6分(2)设()ln(1)gxxx'1()111xgxxx(0,)是()gx增区间,(1,0)是()gx减区间()(0)0gxgln(1)xx9分设1()ln(1)11hxxx'2211()1(1)(1)xhxxxx(0,)是()hx增区间,(1,0)是()hx减区间()(0)0hxh11ln(1)1xx11ln(1)1xxx12分2.数列na的前n项和为,(1)nnSSnn(1)求通项na;(2)若数列nb满足13(1)(2)nannnb,确定的取值范围,使*nN时,都有1nnbb;(3)求证:121211113nnaaaaaan解:(1)1112naS12(1)(1)2nnnnaSSnnnnn2nan(2)1nnbb,1113(1)23(1)2nnnnnn12323(1)nnn113()(1)2nnn为奇数1n为偶数13()2n133()22n323127分(3)先证:1321124231nnn①1n时左边=12右边=12不等式成立8分②假设nk时,不等式成立1321124231kkk,132121121242222231kkkkkkk22(21)(34)4(1)(31)kkkk=3232122819412282040kkkkkkk1211223134kkkk13212112422234kkkkk1nk时,不等式成立10分由①②可得1321124231nnNnn132111242313nnnn12分