人教版八年级上册数学专题+全等三角形中辅助线的添加

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1全等三角形中辅助线的添加一.教学内容:全等三角形的常见辅助线的添加方法、基本图形的性质的掌握及熟练应用。二.知识要点:1、添加辅助线的方法和语言表述(1)作线段:连接……;(2)作平行线:过点……作……∥……;(3)作垂线(作高):过点……作……⊥……,垂足为……;(4)作中线:取……中点……,连接……;(5)延长并截取线段:延长……使……等于……;(6)截取等长线段:在……上截取……,使……等于……;(7)作角平分线:作……平分……;作角……等于已知角……;(8)作一个角等于已知角:作角……等于……。2、全等三角形中的基本图形的构造与运用常用的辅助线的添加方法:(1)倍长中线(或类中线)法:若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。(2)截长补短法:若遇到证明线段的和差倍分关系时,通常考虑截长补短法,构造全等三角形。①截长:在较长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;②补短:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。(3)一线三等角问题(“K”字图、弦图、三垂图):两个全等的直角三角形的斜边恰好是一个等腰直角三角形的直角边。(4)角平分线、中垂线法:以角平分线、中垂线为对称轴利用”轴对称性“构造全等三角形。(5)角含半角、等腰三角形的(绕顶点、绕斜边中点)旋转重合法:用旋转构造三角形全等。(6)构造特殊三角形:主要是30°、60°、90°、等腰直角三角形(用平移、对称和弦图也可以构造)和等边三角形的特殊三角形来构造全等三角形。三、基本模型:(1)DABC△ABC中AD是BC边中线EDABC方式1:延长AD到E,使DE=AD,连接BE2FEDCBA方式2:间接倍长,作CF⊥AD于F,作BE⊥AD的延长线于E,连接BENDCBAM方式3:延长MD到N,使DN=MD,连接CD(2)由△ABE≌△BCD导出由△ABE≌△BCD导出由△ABE≌△BCD导出BC=BE+ED=AB+CDED=AE-CDEC=AB-CD(3)角分线,分两边,对称全等要记全角分线+垂线,等腰三角形必呈现(三线合一)(4)3①旋转:方法:延长其中一个补角的线段(延长CD到E,使ED=BM,连AE或延长CB到F,使FB=DN,连AF)结论:①MN=BM+DN②ABCCMN2③AM、AN分别平分∠BMN和∠DNM②翻折:思路:分别将△ABM和△ADN以AM和AN为对称轴翻折,但一定要证明M、P、N三点共线.(∠B+∠D=0180且AB=AD)(5)手拉手模型①△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC;(2)∠B0E=∠BAE=60°(“八字型”模型证明);(3)OA平分∠EOF拓展:4条件:△ABC和△CDE均为等边三角形结论:(1)、AD=BE(2)、∠ACB=∠AOB(3)、△PCQ为等边三角形(4)、PQ∥AE(5)、AP=BQ(6)、CO平分∠AOE(7)、OA=OB+OC(8)、OE=OC+OD((7),(8)需构造等边三角形证明)②△ABD和△ACE均为等腰直角三角形结论:(1)、BE=CD(2)BE⊥CD③ABEF和ACHD均为正方形结论:(1)、BD⊥CF(2)、BD=CF变形一:ABEF和ACHD均为正方形,AS⊥BC交FD于T,求证:①T为FD的中点.②.ADFABCSS方法一:方法二:5方法三:变形二:ABEF和ACHD均为正方形,M为FD的中点,求证:AN⊥BC④当以AB、AC为边构造正多边形时,总有:∠1=∠2=n360180.PFEDIHGBCA21PGFEDKJIHACB6EDFCBADCBA四、典型例题:考点一:倍长中线(或类中线)法:核心母题已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.练习:1、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.2、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.EDCBA3、如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,求证:CD=2CE。4、已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.75、如图,D是AB的中点,∠ACB=90°,求证:2CD=AB.6、已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE。7、已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF。8、已知:如图,在ABC中,ACAB,D、E在BC上,且DE=EC,过D作BADF//交AE于点F,DF=AC.求证:AE平分BAC。9、以ABC的两边AB、AC为腰分别向外作等腰RtABD和等腰RtACE,90,BADCAE连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当ABC为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰RtABD绕点A沿逆时针方向旋转(090)后,如图②所示,(1)问中得到的两个结FECABDFEDABC第1题图ABFDEC8论是否发生改变?并说明理由.10、已知:△ABC和△ADE是两个不全等的等腰直角三角形,其中BA=BC,DA=DE,联结EC,取EC的中点M,联结BM和DM.(1)如图1,如果点D、E分别在边AC、AB上,那么BM、DM的数量关系与位置关系是;(2)将图1中的△ADE绕点A旋转到图2的位置时,判断(1)中的结论是否仍然成立,并说明理由.变式1:已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC的中点M,连结DM和BM.(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,探索BM、DM的关系并给予证明;(2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.DCBAEMMEABCD图②MDBACE图①MDBACE9变式:2:已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为;(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.NMDECABMECBAD变式3:四边形ABCD是正方形,BEF是等腰直角三角形,90BEF,BEEF,连接DF,G为DF的中点,连接EG,CG,EC。(1)如图24-1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及ECGC的值;(2)将图24-1中的BEF绕点B顺时针旋转至图24-2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图24-1中的BEF绕点B顺时针旋转(090),若1BE,2AB,当E,F,D三点共线时,求DF的长及∠ABF的度数。ACDGEFB图24-1图24-2ACDGEFBABCD备用图10图aFECBA图bFECBA考点二:截长补短法:核心母题如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.练习:1、①如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;②、已知:如图,ABC是等边三角形,120BDC,求证:ADBDCD.③、已知四边形ABCD中,ABBC,60ABC°,P为四边形ABCD的对角线BD上一点,且120APD,求证:PAPDPCBDABCDPBDCA112、在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ。3、如图,在ABC中,60ABC,AD,CE分别为ACBBAC,的平分线,求证:AC=AE+CD4、如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°求证:BD+DC=AB5、已知:如图在△ABC中,AB=AC,D为△ABC外一点,∠ABD=60°,∠ADB=90°-21∠BDC,求证:AB=BD+DC。考点三:一线三等角问题(“K”字图)核心母题已知:如图,在Rt△ABC中,∠BAC=90°,AB=AC,D是BC边上一点,∠ADE=45°,AD=DE,求证:BD=EC.ABCDEO12练习:1、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.2、两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.3、如图,在ABC中,BCACACB,90,直线MN经过点C,且MNAD于点D,MNBE于点E。(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD—BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出等量关系,并加以证明。4、如图所示,AE⊥AB,BC⊥CD且AB=AE,BC=CD,F、A、G、C、H在同一直线上,如按照图中所标注的数据及符号,则图中实线所围成的图形面积是?ABCNMDEABCNMDEBCMNED136、小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2与l3之间的距离是2,试画出一个等腰直角三角形ABC,使三个顶点分别在直线l1、l2、l3上,并求出所画等腰直角三角形ABC的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l1任取一点A,作AD⊥l2于点D,作∠DAH=90°,在AH上截取AE=AD,过点E作EB⊥AE交l3于点B,连接AB,作∠BAC=90°,交直线l2于点C,连接BC,即可得到等腰直角三角形ABC.请你回答:图2中等腰直角三角形ABC的面积等于.参考小雨同学的方法,解决下列问题:如图3,直线l1∥l2∥l3,l1与l2之间的距离是2,l2与l3之间的距离是1,试画出一个等边三角形ABC,使三个顶点分别在直线l1、l2、l3上,并直接写出所画等边三角形ABC的面积(保留画图痕迹).7、如图,在平面直角坐标系中,将直角三角形的直角顶点放在P(5,5)处,两条直角边与坐标轴分别交于点A和点B.(1)当点A、点B分别在x轴、y轴正半轴上运动时,试探究OA+0B的值或取值范围;(2)点A在x轴正半轴上运动,点B在y轴负半轴上时,试探究OA-OB的值或取值范围,直接写出结果。l1l2l3图3l1l2l3图1l1HCBADEl2l3图2l1l2l3图3149、已知:在平面直角坐标系中,等腰直角△ABC顶点A、C分别在y轴、x轴上,且∠ACB=90°,AC=BC.(1)如图1,当A(0,-2),C(1,0),点B在第四象限时,先写出点B的坐标,并说明理由.(2)如图2,当点C在x轴正半轴上运动,点A(0,a)在y轴正半轴上运动,点B(m,n)在第四象限时,作BD⊥y轴于点D,试判断a,m,n之间的关系,请证明你

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功