离散型随机变量的均值与方差、正态分布(基础+复习+习题+练习)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

不会学会,会的做对.青春一经“典当”,永不再赎。531课题:离散型随机变量的均值与方差、正态分布考纲要求:①理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题;②利用实际问题的直方图,了解正态分布曲线及曲线所表示的意义.教材复习1.离散型随机变量分布列的两个性质:任何随机事件发生的概率都满足:0≤()PA≤1,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:1ip≥0,1,2,i…;212pp…1对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和.即(P≥1)()()kkkxPxPx2.数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…xn…Pp1p2…pn…则称E11px22px…nnpx…为ξ的数学期望,简称期望3.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平4.平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令1p2p…np,则有1p2p…1nnp,E1(x2x…1)nnx,所以的数学期望又称为平均数、均值.5.期望的一个性质:若ba,则baEbaE)(6.方差:对于离散型随机变量,如果它所有可能取的值是1x,2x,…,nx,…,且取这些值的概率分别是1p,2p,…,np,…,那么,D=121)(pEx+222)(pEx+…+nnpEx2)(+…称为随机变量的均方差,简称为方差,式中的E是随机变量的期望.7.标准差:D的算术平方根D叫做随机变量ξ的标准差,记作8.方差的性质:1DabaD2)(;222)(EED.9.方差的意义:1随机变量的方差的定义与一组数据的方差的定义式是相同的;2随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;3标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.10.二项分布的期望与方差:若,Bnp,则Enp,1Dnpp11.几何分布的期望和方差:若,gkp1kqp,其中0,1,2k,…,pq1.则1Ep,21pDp.12.正态分布密度函数:不会学会,会的做对.青春一经“典当”,永不再赎。53222()21(),(,)2xfxex,(0)其中是圆周率;e是自然对数的底;x是随机变量的取值;为正态分布的均值;是正态分布的标准差.正态分布一般记为),(2N。即若2,N,则E,2D13.正态分布),(2N是由均值和标准差唯一决定的分布通过固定其中一个值,讨论均值与标准差对于正态曲线的影响,亦见课本中图.14.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称.从形态上看,正态分布是一条单峰、对称呈钟形的曲线.15.正态曲线的性质:1曲线在x轴的上方,与x轴不相交2曲线关于直线x对称3当x时,曲线位于最高点4当x时,曲线上升(增函数);当x时,曲线下降(减函数).并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近5一定时,曲线的形状由确定越大,曲线越“矮胖”,总体分布越分散;越小.曲线越“瘦高”.总体分布越集中6正态曲线下的总面积等于1.即222112xedx16.标准正态曲线:当0、1时,正态总体称为标准正态总体,其相应的函数表示式是2221)(xexf,(x),其相应的曲线称为标准正态曲线标准正态总体0,1N在正态总体的研究中占有重要的地位奎屯王新敞新疆任何正态分布的概率问题均可转化成标准正态分布的概率问题典例分析:考点一求期望与方差问题1.1(07浙江)随机变量的分布列如右:其中abc,,成等差数列,若13E,则D的值是101Pabc不会学会,会的做对.青春一经“典当”,永不再赎。5332设是一个离散型随机变量,其分布列如下表,则E,则D3(07重庆联考)随机变量的分布列如右:那么54E等于.A15.B11.C2.2.D2.34(07黄岗调研)已知~,Bnp,8E,1.6D,则n与p的值分别为.A100和0.08.B20和0.4.C10和0.2.D10和0.85(07天津十校联考)某一离散型随机变量的概率分布如下表,且1.5E,则ab的值为:.A0.1.B0.C0.1.D0.26(06四川)设离散型随机变量可能取的值为1,2,3,4,Pkakb(1,2,3,4k),又的数学期望3E,则ab7(2013山东文)将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x表示:则7个剩余分数的方差为.A1169.B367.C36.D677101P1212q2q124P0.40.30.30123P0.1ab0.18779401091x不会学会,会的做对.青春一经“典当”,永不再赎。534问题2.设随机变量的分布列如右表,求E和D.问题3.(09陕西)某食品企业一个月内被消费者投诉的次数用表示,椐统计,随机变量的概率分布如下:0123p0.10.32aa(Ⅰ)求a的值和的数学期望;(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.w.w.w.k.s.5.u.c.o.m123…nP1n1n1n…1n不会学会,会的做对.青春一经“典当”,永不再赎。535考点二期望与方差的应用问题4.1(2011浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙公司面试的概率为p,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试得公司个数.若1(0)12PX,则随机变量X的数学期望()EX2(2011辽宁)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验。选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.(Ⅰ)假设4n,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(Ⅱ)试验时每大块地分成8小块,即8n,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:2kghm)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?不会学会,会的做对.青春一经“典当”,永不再赎。536考点三正态分布问题5.1(2011湖北)已知随机变量服从正态分布2,2N,且8.04P,则20P.A6.0.B4.0.C3.0.D2.02(2010广东)已知随机变量X服从正态分布(3,1)N,且(24)0.6826PX,则(4)PX.A0.1588.B0.1587.C0.1586.D0.15853(2012全国新课标)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1000,50)N,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为课后作业1.已知的分布列为如右表:则E,D2.抛掷一颗骰子,设所得点数为,则E,D101P0.50.30.2元件1元件2元件3不会学会,会的做对.青春一经“典当”,永不再赎。5373.设服从二项分布,Bnp的随机变量的期望和方差分别为2.4和1.44,则二项分布的参数,np的值为.A4n,0.6p.B6n,0.4p.C8n,0.3p.D24n,0.1p走向高考:1.(08上海)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为5.10.若要使该总体的方差最小,则a、b的取值分别是2.(2013上海)设非零常数d是等差数列12319,,,,xxxx的公差,随机变量等可能地取值12319,,,,xxxx,则方差D3.(2011上海)马老师从课本上抄录一个随机变量的概率分布律如下表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。据此,小牛给出了正确答案E4.(2010湖北)某射手射击所得环数的分布列如下:78910Px0.10.3y已知的期望,则y的值为5.(06福建)一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是?!?321P(ε=x)x不会学会,会的做对.青春一经“典当”,永不再赎。5386.(07四川文)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是.A150.2克.B149.8克.C149.4克.D147.8克7.(2012上海)设443211010xxxx,5510x,随机变量1取值54321xxxxx、、、、的概率均为2.0,随机变量2取值222221554433221xxxxxxxxxx、、、、的概率也均为2.0,若记21DD、分别为21、的方差,则.A21DD.B21DD.C21DD.D1D与2D的大小关系与4321xxxx、、、的取值有关8.(08湖北)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(1,2,3,4n).现从袋中任取一球.表示所取球的标号.1求的分布列,期望和方差;2若ab,1E,11D,试求,ab的值.不会学会,会的做对.青春一经“典当”,永不再赎。5399.(2010北京)某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立。记为该生取得优秀成绩的课程数,其分布列为0123P6125ab24125(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;(Ⅱ)求p,q的值;(Ⅲ)求数学期望E.不会学会,会的做对.青春一经“典当”,永不再赎。54010.(2012全国新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。1若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式;2花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(Ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(Ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功