专题14化学反应原理综合【母题来源】2019年高考新课标Ⅰ卷【母题题文】水煤气变换[CO(g)+H2O(g)=CO2(g)+H2(g)]是重要的化工过程,主要用于合成氨、制氢以及合成气加工等工业领域中。回答下列问题:(1)Shibata曾做过下列实验:①使纯H2缓慢地通过处于721℃下的过量氧化钴CoO(s),氧化钴部分被还原为金属钴Co(s),平衡后气体中H2的物质的量分数为0.0250。②在同一温度下用CO还原CoO(s),平衡后气体中CO的物质的量分数为0.0192。根据上述实验结果判断,还原CoO(s)为Co(s)的倾向是CO_________H2(填“大于”或“小于”)。(2)721℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,采用适当的催化剂进行反应,则平衡时体系中H2的物质的量分数为_________(填标号)。A.<0.25B.0.25C.0.25~0.50D.0.50E.>0.50(3)我国学者结合实验与计算机模拟结果,研究了在金催化剂表面上水煤气变换的反应历程,如图所示,其中吸附在金催化剂表面上的物种用❉标注。可知水煤气变换的ΔH________0(填“大于”“等于”或“小于”),该历程中最大能垒(活化能)E正=_________eV,写出该步骤的化学方程式_______________________。(4)Shoichi研究了467℃、489℃时水煤气变换中CO和H2分压随时间变化关系(如下图所示),催化剂为氧化铁,实验初始时体系中的2HOp和COp相等、2COp和2Hp相等。计算曲线a的反应在30~90min内的平均速率v(a)=___________kPa·min−1。467℃时2Hp和COp随时间变化关系的曲线分别是___________、___________。489℃时2Hp和COp随时间变化关系的曲线分别是___________、___________。【参考答案】(1)大于(2)C(3)小于2.02COOH*+H*+H2O*COOH*+2H*+OH*(或H2O*H*+OH*)(4)0.0047bcad【试题解析】【分析】(1)由H2、CO与CoO反应后其气体物质的量分数判断二者的倾向大小;(2)根据三段式以及CO与H2的倾向大小关系综合判断;(3)根据反应物与生成物的相对能量差大小进行比较判断;根据反应物达到活化状态所需能量为活化能以及相对能量差值大小计算并比较最大能垒;根据最大能垒对应的反应历程对应的物质写出方程式;(4)根据图中曲线a在30~90min内分压变化量计算平均反应速率;先根据CO与H2的倾向大小关系判断CO与H2的含量范围,然后根据温度变化对化学平衡的影响判断出在不同温度下曲线对应的物质。【详解】(1)H2还原氧化钴的方程式为:H2(g)+CoO(s)Co(s)+H2O(g);CO还原氧化钴的方程式为:CO(g)+CoO(s)Co(s)+CO2(g),平衡时H2还原体系中H2的物质的量分数()高于CO还原体系中CO的物质的量分数(),故还原CoO(s)为Co(s)的倾向是CO大于H2;(2)721℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,可设其物质的量为1mol,则CO(g)+H2O(g)CO2(g)+H2(g)起始(mol)1100转化(mol)xxxx平衡(mol)1-x1-xxx则平衡时体系中H2的物质的量分数=,因该反应为可逆反应,故x1,可假设二者的还原倾向相等,则x=0.5,由(1)可知CO的还原倾向大于H2,所以CO更易转化为H2,故x0.5,由此可判断最终平衡时体系中H2的物质的量分数介于0.25~0.50,故答案为C;(3)根据水煤气变换[CO(g)+H2O(g)=CO2(g)+H2(g)]并结合水煤气变换的反应历程相对能量可知,CO(g)+H2O(g)的能量(-0.32eV)高于CO2(g)+H2(g)的能量(-0.83eV),故水煤气变换的ΔH小于0;活化能即反应物状态达到活化状态所需能量,根据变换历程的相对能量可知,最大差值为:其最大能垒(活化能)E正=1.86-(-0.16)eV=2.02eV;该步骤的反应物为COOH*+H*+H2O*=COOH*+2H*+OH*;因反应前后COOH*和1个H*未发生改变,也可以表述成H2O*=H*+OH*;(4)由图可知,30~90min内a曲线对应物质的分压变化量Δp=(4.08-3.80)kPa=0.28kPa,故曲线a的反应在30~90min内的平均速率v(a)=0.28kPa60min=0.0047kPa·min−1;由(2)中分析得出H2的物质的量分数介于0.25~0.5,CO的物质的量分数介于0~0.25,即H2的分压始终高于CO的分压,据此可将图分成两部分:由此可知,a、b表示的是H2的分压,c、d表示的是CO的分压,该反应为放热反应,故升高温度,平衡逆向移动,CO分压增加,H2分压降低,故467℃时PH2和PCO随时间变化关系的曲线分别是b、c;489℃时PH2和PCO随时间变化关系的曲线分别是a、d。【命题意图】本题以水煤气交换为背景,考察化学反应原理的基本应用,较为注重学生学科能力的培养,难点在于材料分析和信息提取,图像比较新,提取信息能力较弱的学生,会比较吃力。第(3)问于我国化学工作者发表在顶级刊物Science中的文章“沉积在α-MoC上单层金原子对水煤气的低温催化反应”,试题以文章中的单原子催化能量变化的理论计算模型为情境,让学生认识、分析催化吸附机理及反应过程中的能量变化。本题属于连贯性综合题目,本题的解题关键在于第(1)问的信息理解与应用,若本题的第(1)问判断错误,会导致后续多数题目判断错误;第(2)问可以采取特殊值法进行赋值并结合极限法计算,考生若只是考虑到完全转化极限,则只能判断出H2的物质的量分数小于0.5,这是由于对题干的信息应用能力不熟练而导致;对于第(4)问中曲线对应物质的确定需根据第(1)(2)问得出的相关结论进行推断,需先确定物质对应曲线,然后再根据勒夏特列原理判读相关物质的变化。【命题方向】化学反应原理综合题涉及的内容主要包括化学反应过程中的焓变、化学能与电能的相互转化、电极反应式的书写、化学反应速率的定性分析与定量计算、化学平衡移动原理在生产中的应用、化学平衡常数的计算、反应条件的控制、弱酸弱碱的转化、pH计算、离子浓度大小的比较、离子的共存、难溶物之间的转化等问题。试题常以选择、填空、读图、作图、计算等形式出现。高考一般以与生产、生活联系紧密的物质为背景材料出组合题,各小题之间有一定独立性。预计2020年高考仍然将结合某个特定的工业生产过程,综合考查反应热、热化学方程式、化学反应速率和化学平衡;考查从图像中获取有效信息,解答与化学反应速率和化学平衡有关的问题,如反应速率、反应转化率、产率,提高转化率的措施等;考查从图表或图像中获取信息,计算转化率、平衡常数等。【得分要点】化学平衡图象解答原则(1)解题思路(2)解题步骤以可逆反应aA(g)+bB(g)cC(g)为例:(1)“定一议二”原则在化学平衡图象中,包括纵坐标、横坐标和曲线所表示的意义三个量,确定横坐标所表示的量后,讨论纵坐标与曲线的关系或确定纵坐标所表示的量,讨论横坐标与曲线的关系。如图:这类图象的分析方法是“定一议二”,当有多条曲线及两个以上条件时,要固定其中一个条件,分析其他条件之间的关系,必要时,作一辅助线分析。(2)“先拐先平,数值大”原则在化学平衡图象中,先出现拐点的反应先达到平衡,先出现拐点的曲线表示的温度较高(如图A)或表示的压强较大(如图B)。图A图B图A表示T2T1,正反应是放热反应。图B表示p1p2,A是反应物,正反应为气体总体积缩小的反应,即a+bc。1.【湖北省黄冈中学2019届高三6月适应性考试(最后一卷)】1799年由英国化学家汉弗莱·戴维发现一氧化二氮(N2O)气体具有轻微的麻醉作用,而且对心脏、肺等器官无伤害,后被广泛应用于医学手术中。(1)一氧化二氮早期被用于牙科手术的麻醉,它可由硝酸铵在催化剂下分解制得,该反应的化学方程式为___________________________。(2)已知反应2N2O(g)===2N2(g)+O2(g)的ΔH=–163kJ·mol-1,1molN2(g)、1molO2(g)分子中化学键断裂时分别需要吸收945kJ、498kJ的能量,则1molN2O(g)分子中化学键断裂时需要吸收的能量为______kJ。(3)在一定温度下的恒容容器中,反应2N2O(g)===2N2(g)+O2(g)的部分实验数据如下:①在0~20min时段,反应速率v(N2O)为____mol·L-1·min-1。②若N2O起始浓度c0为0.150mol/L,则反应至30min时N2O的转化率α=_____。③不同温度(T)下,N2O分解半衰期随起始压强的变化关系如图所示(图中半衰期指任一浓度N2O消耗一半时所需的相应时间),则T1___T2(填“”、“=”或“”)。当温度为T1、起始压强为p0,反应至t1min时,体系压强p=___(用p0表示)。(4)碘蒸气存在能大幅度提高N2O的分解速率,反应历程为:第一步I2(g)=2I(g)(快反应)第二步I(g)+N2O(g)→N2(g)+IO(g)(慢反应)第三步IO(g)+N2O(g)→N2(g)+O2(g)+I(g)(快反应)实验表明,含碘时NO分解速率方程v=k·c(N2O)·[c(I2)]0.5(k为速率常数)。下列表述正确的是___(填标号)。A.温度升高,k值增大B.第一步对总反应速率起决定作用C.第二步活化能比第三步大D.I2浓度与N2O分解速率无关【答案】(1)NH4NO3N2O↑+2H2O(2)1112.5(2)①1.0×10-3②20.0%③1.25p0(4)AC【解析】(1)硝酸铵在催化剂下分解生成一氧化二氮和水,反应的化学方程式为NH4NO3N2O↑+2H2O;(2)2N2O(g)===2N2(g)+O2(g)的ΔH=–163kJ·mol-1,设1molN2O(g)分子中化学键断裂时需要吸收的能量为xkJ,根据反应热=反应物的键能总和-生成物的键能总和,2x-2945kJ-498kJ=-163kJ,解得x=1112.5kJ;①根据表格数据,在0~20min时段,反应速率v(N2O)=ct==1.010-3mol·L-1·min-1;②由表可知,每隔10min,c(N2O)的变化量相等,故单位时间内c(N2O)的变化与N2O的起始浓度无关,每10min均减小0.01mol/L,若N2O起始浓度c0为0.150mol/L,则反应至30min时转化的N2O的浓度为0.01mol/L3=0.03mol/L,则N2O的转化率α=100%=20.0%;③其他条件相同时,温度升高化学反应速率加快,N2O分解半衰期减小,由图可知,压强相同时,半衰期T2T1,则温度T1T2;当温度为T1、起始压强为p0,设起始时的物质的量为1mol,则,2N2O(g)===2N2(g)+O2(g)起始量(mol)100t1min时(mol)0.50.50.25t1min时总物质的量为(0.5+0.5+0.25)mol=1.25mol,根据等温等容条件下,压强之比等于物质的量之比,体系压强p=1.251p0=1.25p0;(4)A.温度升高,化学反应速率增大,因v=k·c(N2O)·[c(I2)]0.5,则温度升高,k值增大,故A正确;B.化学反应速率由反应最慢的反应决定,则第二步对总反应速率起决定作用,故B错误;C.第二步反应为慢反应,第三步反应为快反应,所以第二步活化能比第三步大,故C正确;D.含碘时NO分解速率方程v=k·c(N2O)·[c(I2)]0.5,所以N2O分解速率与I2浓度有关,故D错误。应选AC,故答案为:AC。2.【河北省唐山市第一中学2019届高三下学期冲刺(五)(仿真模拟)】唐山市打造“山水园林城市”,因此研究NOx、S