一.计算习题1-2电力系统的部分接线示于题图1-2,各电压级的额定电压及功率输送方向已标明在图中。试求:(1)发电机及各变压器高、低压绕组的额定电压;(2)各变压器的额定变比;(3)设变压器T-1工作于+5%抽头、T-2、T-4工作于主抽头,T-3工作于-2.5%抽头时,各变压器的实际变比。解(1)发电机:10.5kVVGN,比同电压级网络的额定电压高5%变压器T-1为升压变压器:10.5kVVN2,等于发电机额定电压;242kVVN1,比同电压级网络的额定电压高10%变压器T-2为降压变压器:220kVVN1,等于同电压及网络的额定电压;121kVVN2和38.5kVVN3,分别比同电压级网络的额定电压高10%。同理,变压器T-3:35kVVN1和11kVVN2。变压器T-4:220kVVN1和121kVVN2。(2)T-1:048.235.10/242T1NkT-2:818.1121/2202)T2(1k,714.55.38/2203)T2(1k,143.35.38/1213)T2(2kT-3:182.311/35T3Nk,T-4:818.1121/220T4Nk(3)T-1:2.245.10/242)05.01(T1kT-2:818.1121/2202)T2(1k,714.55.38/2203)T2(1k,143.35.38/1213)2(2TkT-3:102.311/35)025.01(T3k,2110/220T4k例2-6已知)52.63j08.4(TZ,10110/11k试求出图中变压器不含励磁支路的Ⅱ型等值电路。解:变压器阻抗折算到高电压侧时,含理想变压器的等值电路示于图,因此图中各支路阻抗为)52.63j408.0(1052.63j08.4kZT,).0587j453.0(10-152.63j08.41kZT).7060j0453..0(1)-10(1052.63j08.4)1(kkZT例2-8试计算如图所示输电系数各元件电抗的标幺值。已知各元件的参数如下,发电机SG(N)=30MV.A,VG(N)=10.5kV,XG(N)=0.26;变压器T-1ST1(N)=31.5MV.A,VS%=10.5,kT1=10.5/121;变压器T-2ST2(N)=15MVA,VS%=10.5,kT2=110/6.6;电抗器VR(N)=6kV,IR(N)=0.3kA,XR%=5;架空线路长80km,每公里电抗为0.4Ω;电缆线路长2.5km,每公里电抗为0.08Ω。解:首先选择基准值,取全系统的基准功率SB=100MV.A。121kVkV121/5.1015.101VV)ⅡⅠ(B)ⅠB()ⅡB(k7.26kV(110/6.6)1121kV)6.6/110()121/5.10(15.101V1VV)ⅢⅡ(B)ⅡⅠ(B)ⅠB()ⅢⅡ(B)ⅡB()ⅢB(kkk各元件电抗的标幺值为87.05.10100305.1026.0VSSVXX222)ⅠB(BG(N)2G(N)G(B)*G(B)*1x33.05.101005.315.101005.10VSSV100%VX222)ⅠB(BT1(N2)2)ⅠT1(NST1(B)*2x22.0121100804.0VSXX22)ⅡB(BLL(B)*3x58.0211100155.101005.10VSSV100%VX222)ⅡB(BT2(N2)2)ⅡT2(NST2(B)*4x09.126.71003.0361005VS3V100%VX22)ⅡB(BR(N)R(N)R*R(B)5Ix38.026.71005.208.0VSXX22)ⅢB(BCC(B)*6x例6-2在例2-8的电力系统中,电缆线路的未端发生三相短路,已知发电机电势为10.5kV。试分别按元件标幺值计算短路点的电流的有名值。解:取SB=100MV.A,avBVV(kV5.10V)ⅠB(,kV115V)ⅡB(,kV3.6V)ⅢB()87.03010026.0SS26.0GNB1dxx,33.05.311001005.10SS100%VT1(N)BS1T2xx24.0115100804.0VSXx22)ⅡB(BL3,7.0151001005.10SS100%VXT2BST24x46.13.61003.0361005VS3V100%VX22)ⅢB(BR(N)R(N)RR5Ix,504.03.61005.208.0VSXX22)ⅢB(BCC6x104.4504.046.17.024.033.087.0X15.105.10V10.5ⅠBE,244.0104.411I*Xf,kA24.23.63100104.41V3IIⅢ)(B*BffS例3-2已知同步电机的参数为:0.1dx,6.0qx,85.0cos。试求在额定满载运行时的电势qE和QE。解:用标幺值计算,额定满载时V=1.0,I=1.0(1)先计算QE。由图的相量图可得41.1)85.06.0()53.06.01()cos()sinV(2222QIxIxEqq(2)确定QE的相位,相量.EQ和V间的相角差2153.06.0185.06.0sincosarctgIxVIxarctgqq.EQ和I的相位差为:5385.06.053.0cossinarctgVIxVarctgq(3)计算电流和电压的两个轴向分量8.053sin)sin(IIId,6.053cos)cos(IIIq36.021sinsinVVVd,93.021coscosVnVVq(4)计算空载电势qE:73.18.0)6.01(41.1)(qdqdQIxxEEE1x2x3x4x5x6x例4-1某电力系统的等值网络示于。各元件阻抗、导纳均以标幺值标于图中,求节点导纳矩阵。解:3.3303.0111jjY7.3105.13.3313jjKYYT67.66015.0122jjY49.6305.1015.0124jjKYYT7.3558.103.005.1135.01.013.008.0125.0233jjjjjY1331YY11.383.03.008.0134jjY64.275.035.01.0135jjY015.025.004.05301035.01.052105.10015.043015.03.008.032005.1003.021iiiiiiiY习题4-1系统接线示于题图4-1,已知各元件参数如下:发电机G-1:SN=120MV.A,;G-2:SN=60MV.A,。变压器T-1:SN=120MV.A,;T-2:SN=60MV.A,。线路参数:,。线路长度L-1:120km,L-2:80km,L-3:70km。取SB=120MV.A,VB=Vav,试求标幺制下的节点导纳矩阵。解:选AMV201SB,avBVV,采用标幺参数的近似算法,即忽略各元件的额定电压和相应电压级的avV的差别,并认为所有变压器的标幺变比都等于1。(1)计算各元件参数的标幺值23.012012023.0SSG1NBdG11xXd,28.06012014.0SSG2NBdG22xXd105.01201201005.10SS100%VT1NBS1T1X,21.0601201005.10SS100%VT2NBS2T2X43554.01151201204.0SS22avB111lxXl,01852.0120115120108.221SV21B2126B2av11bll2904.01208043554.01212llXXll,01235.01208001852.0B21B211212llll2541.01207043554.01313llXXll,0108.01207001852.0B21B211313llll(2)计算各支路导纳。j4.34780.231jXj1d110yj3.75140.281jXj1d220yj9.5240.1051jjX1T113yj4.7620.211jjX1T224yj2.2960.435541jjX1134ly23.0dx14.0dx%5.10SV%5.10SV/km4.01xS/km102.8b-61j3.4440.29041jjX1235lyj3.9360.25411jjX1345lyj0.03087)01235.01852.0(jB21jB21j2130llyj0.02932)0108.01852.0(j)B21jB21j(3140llyj0.02315)0108.001235.0(j)B21jB21j(3250lly(3)计算导纳矩阵元素。(a)对角元-j13.872j9.524-j4.3478Y131011yy-j8.333j4.762-j3.5714Y242022yy-j15.233j3.444-j2.296-j9.524-j0.03087Y3434313033yyyy-j10.965j3.936-j2.296-j4.762-j0.02932Y45424044yyy-j7.357-j3.936-j3.444-j0.02315Y54535055yyy(b)非对角元0.0YY2111j9.524YY133113y0.0YY41140.0YY5115j4.762YY244224y.2962jYY344334y.4443jYY355335y.9363jYY455445y导纳矩阵如下j7.357j3.936j3.4440.00.0j3.936j10.965j2.296j4.7620.0j3.444j2.296j15.2330.0j9.5240.0j4.7620.0j8.3330.00.00.0j9.5240.0j13.872Y习题5-1供电系统如图5-1所示,各元件参数如下。线路L:长50km,x=0.4Ω/km;变压器T:SN=100MVA,VS=10.5%,kT=110/11。假定供电点电压为106.5kV,保持恒定,当空载运行进变压器低压母线发生三相短路。试计算:(1)短路电流周期分量,冲击电流,短路电流最大有效值及短路功率等的有名值;解:按有名值计算20504.0XLxl,05.12710110SV100%VX2TN2NST05.147)05.12720(XXXTL(1)短路电流和短路功率计算(a)基频分量kA4181.0kA05.1473V)0(I短路点的电流kA181.4kA111104184.0TpkII(b)冲击电流取8.1impk10.644kAkA8.1181.422imppimpkIi(c)短路电流最大有效值6.314kAkA)18.1(21181.4)1(2122impimppkII(d)短路功率A72.424MVAMV181.40.13IV3PNfS习题5-3一台无阻