集合与常用逻辑用语第一节集合第二节命题及其关系、充分条件与必要条件第三节简单的逻辑联结词、全称量词与存在量词目录集合与常用逻辑用语[知识能否忆起]一、元素与集合1.集合中元素的三个特性:、、.2.集合中元素与集合的关系:元素与集合之间的关系有和两种,表示符号为和.确定性互异性无序性属于不属于∈∉3.常见集合的符号表示:4.集合的表示法:、、.集合自然数集正整数集整数集有理数集实数集表示列举法描述法韦恩图NN*或N+ZQR二、集合间的基本关系描述关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同子集A中任意一元素均为B中的元素或真子集A中任意一元素均为B中的元素,且B中至少有一个元素A中没有或空集空集是任何集合的子集空集是任何的真子集__________A=BA⊆BB⊇AABBA∅⊆B非空集合∅B(B≠∅)ÜÝÜ三、集合的基本运算集合的并集集合的交集集合的补集符号表示A∪BA∩B若全集为U,则集合A的补集为∁UA图形表示意义{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}[小题能否全取]1.(2012·大纲全国卷)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则()A.A⊆BB.C⊆BC.D⊆CD.A⊆D解析:选项A错,应当是B⊆A.选项B对,正方形一定是矩形,但矩形不一定是正方形.选项C错,正方形一定是菱形,但菱形不一定是正方形.选项D错,应当是D⊆A.答案:B2.(2012·浙江高考)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁RB)=()A.(1,4)B.(3,4)C.(1,3)D.(1,2)∪(3,4)解析:因为∁RB={x|x>3,或x<-1},所以A∩(∁RB)={x|3<x<4}.答案:B3.(教材习题改编)A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},则A∩B=B时a的值是()A.2B.2或3C.1或3D.1或2解析:验证a=1时B=∅满足条件;验证a=2时B={1}也满足条件.答案:D4.(2012·盐城模拟)如图,已知U={1,2,3,4,5,6,7,8,9,10},集合A={2,3,4,5,6,8},B={1,3,4,5,7},C={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.解析:阴影部分表示的集合为A∩C∩(∁UB)={2,8}.答案:{2,8}5.(教材习题改编)已知全集U={-2,-1,0,1,2},集合A=xx=2n-1,x,n∈Z,则∁UA=________.解析:因为A=xx=2n-1,x,n∈Z,当n=0时,x=-2;n=1时不合题意;n=2时,x=2;n=3时,x=1;n≥4时,x∉Z;n=-1时,x=-1;n≤-2时,x∉Z.故A={-2,2,1,-1},又U={-2,-1,0,1,2},所以∁UA={0}.答案:{0}1.正确理解集合的概念研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y=f(x)}、{y|y=f(x)}、{(x,y)|y=f(x)}三者的不同.2.注意空集的特殊性空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A⊆B,则需考虑A=∅和A≠∅两种可能的情况.[例1](1)(2012·新课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10(2)已知集合M={1,m},N={n,log2n},若M=N,则(m-n)2013=________.[自主解答](1)∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5},∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4.∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)},∴B中所含元素的个数为10.(2)由M=N知n=1,log2n=m或n=m,log2n=1,∴n=1,m=0或m=2,n=2,故(m-n)2013=-1或0.[答案](1)10(2)-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.1.(1)(2012·北京东城区模拟)设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为()A.9B.8C.7D.6(2)已知集合A={a-2,2a2+5a,12},且-3∈A,则a=________.解析:(1)∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11,∴P+Q={1,2,3,4,6,7,8,11},∴P+Q中有8个元素.(2)∵-3∈A,∴-3=a-2或-3=2a2+5a.∴a=-1或a=-32.当a=-1时,a-2=-3,2a2+5a=-3,与元素互异性矛盾,应舍去.当a=-32时,a-2=-72,2a2+5a=-3.∴a=-32满足条件.答案:(1)B(2)-32[例2](1)(2012·湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B={x|0x5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.[自主解答](1)由x2-3x+2=0,得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)由log2x≤2,得0x≤4,即A={x|0x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a4,即c=4.[答案](1)4(2)41.判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn图帮助分析.2.已知集合A={y|y=-x2+2x},B={x||x-m|2013},若A∩B=A,则m的取值范围是()A.[-2012,2013]B.(-2012,2013)C.[-2013,2011]D.(-2013,2011)解析:集合A表示函数y=-x2+2x的值域,由t=-x2+2x=-(x-1)2+1≤1,可得0≤y≤1,故A=[0,1].集合B是不等式|x-m|2013的解集,解之得m-2013xm+2013,所以B=(m-2013,m+2013).因为A∩B=A,所以A⊆B.如图,由数轴可得m-20130,m+20131,解得-2012m2013.答案:(-2012,2013)[例3](1)(2011·江西高考)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪NB.M∩NC.(∁UM)∪(∁UN)D.(∁UM)∩(∁UN)(2)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁UA)∩B=∅,则m的值是________.[自主解答]A={-2,-1},由(∁UA)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1或m=2符合条件.∴m=1或2.[答案](1)D(2)1或2将例3(1)中的条件“M={2,3}”改为“M∩N=N”,试求满足条件的集合M的个数.解:由M∩N=N得M⊇N.含有2个元素的集合M有1个,含有3个元素的集合M有4个,含有4个元素的集合M有6个,含有5个元素的集合M有4个,含有6个元素的集合M有1个.因此,满足条件的集合M有1+4+6+4+1=16个.1.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时注意端点值的取舍.2.在解决有关A∩B=∅,A⊆B等集合问题时,一定先考虑A或B是否为空集,以防漏解.另外要注意分类讨论和数形结合思想的应用.3.(2013·合肥模拟)如图,已知R是实数集,集合A={x|log12(x-1)0},B=x2x-3x0,则阴影部分表示的集合是()A.[0,1]B.[0,1)C.(0,1)D.(0,1]解析:图中阴影部分表示集合B∩(∁RA),又A={x|1x2},B=x0x32,∴∁RA={x|x≤1,或x≥2},B∩(∁RA)={x|0x≤1}.答案:D以集合为背景的新定义问题是近几年高考命题创新型试题的一个热点,此类题目常常以“问题”为核心,以“探究”为途径,以“发现”为目的,常见的命题形式有新定义、新运算、新性质,这类试题只是以集合为依托,考查考生理解问题、解决创新问题的能力.1.创新集合新定义创新集合新定义问题是通过重新定义相应的集合,对集合的知识加以深入地创新,结合原有集合的相关知识和相应数学知识,来解决新定义的集合创新问题.[典例1]若x∈A,则1x∈A,就称A是伙伴关系集合,集合M=-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.31[解析]具有伙伴关系的元素组是-1;12,2,所以具有伙伴关系的集合有3个:{-1},12,2,-1,12,2.[答案]B[题后悟道]该题是集合新定义的问题,定义了集合中元素的性质,此类题目只需准确提取信息并加工利用,便可顺利解决.2.创新集合新运算创新集合新运算问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.[典例2]设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x1},Q={x||x-2|1},那么P-Q=()A.{x|0x1}B.{x|0x≤1}C.{x|1≤x2}D.{x|2≤x3}[解析]由log2x1,得0x2,所以P={x|0x2};由|x-2|1,得1x3,所以Q={x|1x3}.由题意,得P-Q={x|0x≤1}.[答案]B[题后悟道]解决创新集合新运算问题常分为三步:(1)对新定义进行信息提取,确定化归的方向;(2)对新定义所提取的信息进行加工,探求解决方法;(3)对定义中提出的知识进行转换,有效地输出.其中对定义信息的提取和转化与化归是解题的关键,也是解题的难点.3.创新集合新性质创新集合新性质问题是利用创新集合中给定的