2011年高考数学试题分类汇编——概率

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

12011年高考数学试题分类汇编——概率一、选择题1.(浙江理9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A.15B.25C.35D45【答案】B2.(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)1l[31.5,35.5)12[35.5.39.5)7[39.5,43.5)3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.16B.13C.12D.23【答案】B【解析】从31.5到43.5共有22,所以221663P。3.(陕西理10)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是A.136B.19C.536D.16【答案】D4.(全国新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A)13(B)12(C)23(D)34【答案】A5.(辽宁理5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=(A)18(B)14(C)25(D)12【答案】B6.(湖北理5)已知随机变量服从正态分布22N,a,且P(<4)=0.8,则P(02<<2)=A.0.6B.0.4C.0.3D.0.2【答案】C7.(湖北理7)如图,用K、1A、2A三类不同的元件连接成一个系统。当K正常工作且1A、2A至少有一个正常工作时,系统正常工作,已知K、1A、2A正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960B.0.864C.0.720D.0.576【答案】B8.(广东理6)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A.12B.35C.23D.34【答案】D9.(福建理4)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A.14B.13C.12D.23【答案】C二、填空题10.(湖北理12)在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期饮料的概率为。(结果用最简分数表示)【答案】2814511.(福建理13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。【答案】35312.(浙江理15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙丙公司面试的概率为p,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若1(0)12PX,则随机变量X的数学期望()EX【答案】5313.(湖南理15)如图4,EFGH是以O为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)=_____________;(2)P(B|A)=.【答案】(1)21,(2)414.(上海理9)马老师从课本上抄录一个随机变量的概率分布律如下表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。据此,小牛给出了正确答案E。【答案】215.(重庆理13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率__________【答案】113216.(上海理12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是(默认每月天数相同,结果精确到0.001)。【答案】0.98517.(江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为?!?321P(ε=x)x4【答案】131618.(江苏5)5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______【答案】31三、解答题19.(湖南理18)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。(Ⅰ)求当天商品不进货的概率;(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。解(I)P(“当天商品不进货”)P(“当天商品销售量为0件”)P(“当天商品销售量为1件”).103205201(Ⅱ)由题意知,X的可能取值为2,3.PXP)2((“当天商品销售量为1件”);41205PXP)3((“当天商品销售量为0件”)P(“当天商品销售量为2件”)P(“当天商品销售量为3件”).43205209201故X的分布列为X23P4143X的数学期望为.411433412EX20.(安徽理20)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任5务的概率分别,,ppp,假设,,ppp互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,,qqq,其中,,qqq是,,ppp的一个排列,求所需派出人员数目X的分布列和均值(数字期望)EX;(Ⅲ)假定ppp,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。解:本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.解:(I)无论以怎样的顺序派出人员,任务不能被完成的概率都是)1)(1)(1(321ppp,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于.)1)(1)(1(1321133221321321ppppppppppppppp(II)当依次派出的三个人各自完成任务的概率分别为321,,qqq时,随机变量X的分布列为X123P1q21)1(qq)1)(1(21qq所需派出的人员数目的均值(数学期望)EX是.23)1)(1(3)1(2212121211qqqqqqqqqEX(III)(方法一)由(II)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,.232121ppppEX根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.下面证明:对于321,,ppp的任意排列321,,qqq,都有212123qqqq,232121pppp……………………(*)事实上,)23()23(21212121ppppqqqq6.0)]())[(1())((1())(2()()()()(2)()(221211221112221211221121212211qqppqqpqqppqpqpqpqpqpqqppqpqp即(*)成立.(方法二)(i)可将(II)中所求的EX改写为,)(312121qqqqq若交换前两人的派出顺序,则变为,)(312121qqqqq.由此可见,当12qq时,交换前两人的派出顺序可减小均值.(ii)也可将(II)中所求的EX改写为212123qqqq,或交换后两人的派出顺序,则变为313123qqqq.由此可见,若保持第一个派出的人选不变,当23qq时,交换后两人的派出顺序也可减小均值.序综合(i)(ii)可知,当),,(),,(321321pppqqq时,EX达到最小.即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.21.(北京理17)以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。(注:方差2222121nsxxxxxxn,其中x为1x,2x,……nx的平均数)解:(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为;435410988x方差为7.1611])43510()4359()4358()4358[(4122222s(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)=.81162同理可得;41)18(YP;41)19(YP.81)21(;41)20(YPYP所以随机变量Y的分布列为:Y1718192021P8141414181EY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×81+18×41+19×41+20×41+21×81=1922.(福建理19)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准(I)已知甲厂产品的等级系数X1的概率分布列如下所示:1x5678P0.4ab0.1且X1的数字期望EX1=6,求a,b的值;(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:353385563463475348538343447567用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望.(III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.8注:(1)产品的“性价比”=产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.解:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。解:(I)因为16,50.46780.16,673.2.EXabab所以即又由X1的概率分布列得0.40.11,0.5.abab即由673.2,0.3,0.5.0.2.abaabb解得(II)由已知得,样本的频率分布表如下:2X345

1 / 17
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功