平稳时间序列模型及其特征

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第一章平稳时间序列模型及其特征第一节模型类型及其表示一、自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型:Xt=φXt-1+εt(2.1.1)常记作AR(1)。其中{Xt}为零均值(即已中心化处理)平稳序列,φ为Xt对Xt-1的依赖程度,εt为随机扰动项序列(外部冲击)。如果Xt与过去时期直到Xt-p的取值相关,则需要使用包含Xt-1,……Xt-p在内的p阶自回归模型来加以刻画。P阶自回归模型的一般形式为:Xt=φ1Xt-1+φ2Xt-2+…+φpXt-p+εt(2.1.2)为了简便运算和行文方便,我们引入滞后算子来简记模型。设B为滞后算子,即BXt=Xt-1,则B(Bk-1Xt)=BkXt=Xt-kB(C)=C(C为常数)。利用这些记号,(2.1.2)式可化为:Xt=φ1BXt+φ2B2Xt+φ3B3Xt+……+φpBpXt+εt从而有:(1-φ1B-φ2B2-……-φpBp)Xt=εt记算子多项式φ(B)=(1-φ1B-φ2B2-……-φpBP),则模型可以表示成φ(B)Xt=εt(2.1.3)例如,二阶自回归模型Xt=0.7Xt-1+0.3Xt-2+0.3Xt-3+εt可写成(1-0.7B-0.3B2)Xt=εt二、滑动平均模型(MA)有时,序列Xt的记忆是关于过去外部冲击值的记忆,在这种情况下,Xt可以表示成过去冲击值和现在冲击值的线性组合,即Xt=εt-θ1εt-1-θ2εt-2-……-θqεt-q(2.1.4)此模型常称为序列Xt的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。相应的序列Xt称为滑动平均序列。使用滞后算子记号,(2.1.4)可写成Xt=(1-θ1B-θ2B2-……-θqBq)qt=θ(B)εt(2.1.5)三、自回归滑动平均模型如果序列{Xt}的当前值不仅与自身的过去值有关,而且还与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为:Xt=φ1Xt-1+φ2Xt-2+……+φpXt-p+εt-θ1εt-1-θ2εt-2-……-θqεt-q(2.1.6)简记为ARMA(p,q)。利用滞后算子,此模型可写为φ(B)Xt=θ(B)εt(2.1.7)第二节线性时间序列模型的平稳性、可逆性和传递性首先介绍两个概念。①序列的传递形式:设{Yt}为随机序列,{εt}为白噪声,若{Yt}可表示为:Yt=εt+G1εt-1+G2εt-2+……+Gkεt-k+……=G(B)εt且1kG,则称{Yt}具有传递形式,此时{Yt}是平稳的。系数{Gk}称为格林函数。它描述了系统对过去冲击的动态记忆性强度。②序列的逆转形式:若{Yt}可表示为:εt=Yt-π1Yt-1-π2Yt-2-……-πkYt-k-……=π(B)Yt且1k,则称{Yt}具有逆转形式(或可逆形式)。一、MA模型1.MA模型本身就是传递形式。2.MA(q)总是平稳的(由上一章的例),MA(∞)在系数级数绝对收敛的条件下平稳。3.MA(q)模型的可逆性条件。先以MA(1)(Yt=εt-θ1εt-1)为例进行分析。MA(1)的可逆性条件为:11。如果引入滞后算子表示MA(1),则Yt=(1-θ1B)εt,可逆条件11等价于θ(B)=1-θ1B=0的根全在单位圆外。对于一般的MA(q)模型,利用滞后算子表示有:Yt=(1-θ1B-θ2B2-……-θqBq)εt=θ(B)εt其可逆的充要条件是:θ(B)=0的根全在单位圆外(证明见Box-Jenkins,P79)。在可逆的情况下,服从MA(q)模型的序列可以表示成无穷阶的AR模型:θ-1(B)Yt=εtMA(q)的可逆域:使θ(B)=0的根全在单位圆之外的系数向量(θ1,θ2,……,θq)所形成的集合。例:求MA(2)的可逆域。解:由2211ttttY,其特征方程为:01)(221BBB该方程的两个根为:2221112422211224由二次方程根与系数的关系,有2121221,1当MA(2)平稳时,根的模21与都必须大于1,因此必有:11212由根与系数的关系,可以推出如下式子:)11)(11(12112)11)(11(12112由于21、是实数,21与必同为实数或共轭复数。又因为1i,因此011i故121)11)(11(121反之,如果12,且112。那么从11212可以推出至少有一个1i,例如,假设11,则根据1)11)(11(121可推出0)11)(11(21,由0111可以推出0112,从而12。因此,01)(221BBB的根在单位圆之外。(平稳域为一三角形)。二、AR模型1.AR(P)模型本身就是一种逆转形式。2.平稳性。先以AR(1)(Yt=1Yt-1+εt),进行分析。AR(1)平稳的条件为11,它等价于(B)=1-1B=0的根在单位圆外。3、在平稳的情况下,AR(1)有传递形式:(1-1B)Yt=εtjtjjttBY01111一般地,对于AR(P)模型:(B)Yt=εt,序列{Yt}平稳的充要条件是:(B)=0的根全在单位圆外。此时,Yt有传递形式:Yt=-1(B)εtAR(P)的平稳域:使(B)=0的根全在单位圆外的AR系数向量(1,2,……,p,)的全体形成的集合。练习:求AR(1)与AR(2)的平稳域。三、ARMA(p,q)模型1、平稳性与传递形式首先考察ARMA(1,1)的平稳性:Yt–φ1Yt-1=εt–θ1εt-1Yt平稳︱φ1︱<1(与AR(1)的平稳域相同)此结论表明,ARMA(1,1)序列的平稳性仅与自回归系数有关,而与滑动平均系数无关。而且平稳条件与AR(1)的平稳条件相同。在平稳的条件下,Yt有上述形式的传递形式。一般地,服从ARMA(p,q)模型的序列Yt平稳的充要条件是:φ(B)=0的根全在单位圆外。在平稳的条件下,Yt有传递形式Yt=φ-1(B)θ(B)εt2、可逆性对于ARMA(1,1),假定可逆形式为εt=π(B)Yt=(1–π1B–π2B2–…–πkBk–…)Yt代入ARMA(1,1)的滞后算子表示形式,采用类似前面的方法,比较同次冥系数可得εt=Yt–(φ1–θ1)Yt-1–θ1(φ1–θ1)Yt-2–…–θ1k-1(φ1–θ1)Yt-k–…根据前面的定义(可逆性定义),应有︱φ1︱<1。因此,ARMA(1,1)可逆的条件是︱φ1︱<1,它仅与滑动系数有关,而与自回归系数无关。而且可逆条件与MA(1)的可逆条件相同。一般地,服从ARMA(p,q)模型的序列Yt,其具有可逆性的条件是:θ(B)=0的根全在单位圆外。在可逆的条件下,Yt的逆转形式为εt=θ-1(B)φ(B)Yt3、传递性与可逆性的重要意义第三节线性时间序列模型的自相关函数与偏自相关函数一、自相关函数1、MA(q)模型的自相关函数设{Yt}服从:Yt=θ(B)εt=εt–θ1εt-1–…–θqεt-q=–qj0θjεt-j,θ0=–1则{Yt}的s阶自协方差函数为:γs=qj0θjθs+jσ2=σ2(θ0θs+θ1θs+1+…+θq-sθq)(s≤q)(θ0=-1)0(sq)由上式,有γ0=σ2(1+θ12+…+θq2)故{Yt}的自相关函数(ACF)为:ρs=γs/γ0=qsqssqqsqss10,,,01122111上式表明,MA(q)模型的记忆仅有q个时段,Yt的自协方差函数或自相关函数(ACF)q步截尾。这是MA(q)模型的典型特征。MA(q)的典型特征:ρs在q步截尾。2、AR(p)模型的自相关函数首先考察AR(1)(Yt=φ1Yt-1+εt)的自相关函数的特征。Yt的自协方差函数为:γs=Cov(Yt,Yt+s)=φ1γs-1从而γs=φ1γs-1=φ12υs-2=…=φ1sγ0自相关函数(ACF)为:ρs=γs/γ0=φ1s当︱φ1︱<1,ρs—0,即自相关函数ρs随s的增大而衰减至零。这种现象称为拖尾性。对于一般的AR(p),序列的自相关函数的特征分析如下:设Yt=φ1Yt-1+φ2Yt-2+…+φpYt-p+εt=φ(B)Yt+εt则自协方差函数:γs=φ1γs-1+φ2γs-2+…+φpγs-p这是一个关于{s}的线性差分方程。上式两边同除γ0,得关于自相关函数(ACF)的线性差分方程。ρs=φ1ρs-1+φ2ρs-2+…+φpρs-p在AR(p)平稳的条件下,φ(B)=0有p个在单位圆外的根а1、а2,…,аp。根据线性差分方程解的有关理论,自相关函数(ACF)服从的线性差分方程φ(B)ρs=0的通解为:ρs=c1а1-s+c2а2-s+…+cpаp-s由于︱аj︱>1,因此ρs将按指数衰减(实根情形)或正弦振荡衰减(复根情形)。这种特性称为AR(p)的拖尾性。AR(p)的典型特征是:ρs拖尾(衰减)3、ARMA(p,q)的自相关函数设ARMA(p,q)的形式为:Yt=φ1Yt-1+φ2Yt-2+…+φpYt-p+εt–θ1εt-1–…–θqεt-q则Yt的s阶自协方差函数为:γs=φ1γs-1+φ2γs-2+…+φpγs-p+E(Ytεt+S)–θ1E(Ytεt+S-1)–…–θqE(Ytεt+S-q)①当0≤s≤q时,εt+S,εt+S-1,…,εt+S-q中有一部分位于t时刻以前(t+s-i≤ts-i≤0),Yt与这一部分外部冲击有关,从而γs除了受自回归系数的影响外,还受一部分滑动平均系数的影响。②当s>q时,s-q>0,t+s-q>t,从而εt+S,εt+S-1,…,εt+S-q全在t时刻以后,由于Yt与未来的外部冲击不相关,因此γs中后面的项全为零。γs=φ1γs-1+φ2γs-2+…+φpγs-p它只同自回归系数有关。两边同除γ0,得ρs=φ1ρs-1+φ2ρs-2+…+φpρs-p(s>q)即ARMA(p,q)的自相关函数(ACF)在s>q时,与AR(p)的自相关函数所满足的线性差分方程完全相同。借用前面关于AR(p)的自相关函数特征的讨论可知,ARMA(p,q)的自相关函数(ACF)在q以后随s的增长按指数衰减或以正弦振荡衰减,即仍体现出拖尾特征。二、偏自相关函数从前面的自相关函数的讨论中可看出,自相关函数的截尾性是MA(q)的独有特征,但自相关函数的拖尾性却是AR(p)与ARMA(p,q)共有的特征,尽管ARMA(p,q)的自相关函数在q阶后开始按指数衰减或以正弦振荡衰减,但这还不足于区别AR(p)与ARMA(p,q),因为在实际应用中很难区分是否是从q阶开始衰减的。因此,还需寻找序列的其他统计特征。这就是偏自相关函数的特征。设{Yt}是一随机序列,所谓Yt的s阶偏自相关系数,是指扣出中间s-1个项的影响之后,Yt与Yt+s的相关系数。为了考察偏自相关函数的特性,我们分析如下:设{Yt}是一零均值平稳序列,我们设想用Yt-1,Yt-2,…,Yt-s的s阶自回归模型去拟和Yt,即建立如下模型:Yt=φs1Yt-1+φs2Yt-2+…+φssYt-s+et其中et为误差项。估计模型的常用方法是最小二乘法,即选择φs1,φs2,…,φss使模型的残差方差Q=E(Yt-sj1φSjYt-j)2=Eet2达到最小。根据极值条件应有:Q∕φSj=0(j=1,2,…,s)据此,可推出φs1,φs2,…,φss所满足的方程为

1 / 13
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功