人教版初中数学八年级下册《勾股定理》PPT课件

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

勾股定理人教版八年级(下)第十八章这就是本届大会会徽的图案.活动1你见过这个图案吗?你听说过勾股定理吗?这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.活动2相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系.我们也来观察右图中的地面,看看有什么发现?数学家毕达哥拉斯的发现:A、B、C的面积有什么关系?直角三角形三边有什么关系?SA+SB=SC两直边的平方和等于斜边的平方ABCABCABC(图中每个小方格代表一个单位面积)图2-1图2-2让我们一起再探究:等腰直角三角形三边关系A的面积(单位长度)B的面积(单位长度)C的面积(单位长度)图1图29918448ABCABC(图中每个小方格代表一个单位面积)图2-1图2-2cS正方形1433182分“割”成若干个直角边为整数的三角形(单位面积)ABCABC(图中每个小方格代表一个单位面积)图2-1图2-2cS正方形216218(单位面积)把C“补”成边长为6的正方形面积的一半ABCABC(图中每个小方格代表一个单位面积)图2-1图2-2SA+SB=SCA的面积(单位长度)B的面积(单位长度)C的面积(单位长度)图2-19918图2-2A、B、C面积关系直角三角形三边关系448两直角边的平方和等于斜边的平方ABC图1-2ABC图1-32.观察右边两个图并填写下表:A的面积B的面积C的面积图1-2图1-3169254913你是怎样得到表中的结果的?与同伴交流交流.做一做ABC图1-2ABC图1-33.三个正方形A,B,C面积之间有什么关系?SA+SB=SC即:两条直角边上的正方形面积之和等于斜边上的正方形的面积.议一议ABCacbSa+Sb=Sc设:直角三角形的三边长分别是a、b、c猜想:两直角边a、b与斜边c之间的关系?a2+b2=c2┏a2+b2=c2acb如果直角三角形的两直角边长分别是a、b,斜边长是c,那么a2+b2=c2。勾股弦命题1:cba(b-a)2中黄实朱实活动3看左边的图案,这个图案是公元3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(红色)可以如图围成一个大正方形,中间的部分是一个小正方形(黄色).黄实朱实朱实朱实朱实ba22:ba它们的面积和acab.,,,1222cbacba那么斜边长为别为角边长分如果直角三角形的两直命题.,,,:222cbacba那么斜边长为别为角边长分如果直角三角形的两直勾股定理经过证明被确认正确的命题叫做定理.看一看赵爽弦图的证法224()42SSSabcba大正方形小正方形直角三角形化简得:c2=a2+b2.cba(b-a)2中黄实朱实┏a2+b2=c2acb直角三角形两直角边的平方和等于斜边的平方.勾股弦勾股定理(毕达哥拉斯定理)赵爽的“弦图”早在公元3世纪,我国数学家赵爽就用左边的图形验证了“勾股定理”思考:你能验证吗?(4)(3)(2)(1)(2)(3)(4)cccc(a-b)2(a-b)2C2-4×21ab=a2+b2=c2可得:a2+b2-2ab=c2-2abbCa想一想:这四个直角三角形还能怎样拼?证明一babababacccc想一想:大正方形的面积该怎样表示?(a+b)2=a2+b2+2ab=c2+2ab可得:a2+b2=c2ab2142c证明二a2b2a2+b2=c2a2b2a2c2对比两个图形,你能直接观察验证出勾股定理吗?a证明六印度婆什迦羅的證明cc2=b2+a2b证明八证明八证明八证明八证明八a2b2证明九证明九证明九证明九证明九c2a2+b2=c2证明九证明九拼图游戏证明九拼图游戏无字证明青出朱方青方朱入朱出青入青入青出青出abc无字证明①②③④⑤青出朱入朱出朱方青方青入青入青出青出华罗庚青朱出入图朱入朱出证明十IIIIII注意:面积I:面积II:面积III=a2:b2:c2IIIIII注意:面积I:面积II:面积III=a2:b2:c2证明十IIIIII注意:面积I:面积II:面积III=a2:b2:c2证明十注意:面积I:面积II:面积III=a2:b2:c2证明十注意:面积I:面积II:面积III=a2:b2:c2证明十注意:面积I:面积II:面积III=a2:b2:c2证明十注意:面积I:面积II:面积III=a2:b2:c2由此得,面积I+面积II=面积III因此,a2+b2=c2。证明十1.求下列图中表示边的未知数x、y、z的值.①81144z②③做一做625576144169做一做:P62540026xP的面积=______________X=____________24322622x24225BACAB=__________AC=__________BC=__________251520比一比看看谁算得快!2.求下列直角三角形中未知边的长:可用勾股定理建立方程.方法小结:8x171620x125x做一做小结:活动4布置作业:勾股定理从边的角度刻画了直角三角形的又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等.收集有关勾股定理的证明方法,下节课展示、交流.1、本节课我们经历了怎样的过程?经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程。2、本节课我们学到了什么?通过本节课的学习我们不但知道了著名的勾股定理,还知道从特殊到一般的探索方法及借助于图形的面积来探索、验证数学结论的数形结合思想。3、学了本节课后我们有什么感想?很多的数学结论存在于平常的生活中,需要我们用数学的眼光去观察、思考、发现,这节课我们还受到了数学文化辉煌历史的教育。

1 / 63
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功