Statistical tomographic image reconstruction metho

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

StatisticalTomographicImageReconstructionMethodsforRandoms-PrecorrectedPETMeasurementsbyMehmetYavuzAdissertationsubmittedinpartialful llmentoftherequirementsforthedegreeofDoctorofPhilosophy(ElectricalEngineering:Systems)inTheUniversityofMichigan2000DoctoralCommittee:AssociateProfessorJe reyA.Fessler,ChairProfessorAlfredHeroProfessorW.LeslieRogersProfessorAndrewE.YagleThisversionisformattedsinglespacedtosavepaperwhenprinting.Itisnottheocialarchivedversion.ABSTRACTStatisticalTomographicImageReconstructionMethodsforRandoms-PrecorrectedPETMeasurementsbyMehmetYavuzChair:Je reyA.FesslerMedicalimagingsystemssuchaspositronemissiontomography(PET)andelectron-icallycollimatedsinglepositronemissiontomography(SPECT)recordparticleemissioneventsbasedontimingcoincidences.Thesesystemsrecordaccidentalcoincidence(AC)eventssimultaneouslywiththetruecoincidenceevents.Similarlyinlowlight-levelimag-ing,thermoelectronsgeneratedbyphotodetectorareindistinguishablefromphotoelectronsgeneratedbyphoto-conversion,andtheire ectissimilartotheACevents.DuringPETemissionscans,accidentalcoincidence(AC)eventsoccurwhenphotonsthatoriginatefromseparatepositron-electronannihilationsaremistakenlyrecordedashavingarisenfromthesameannihilation.InPET,generallyasigni cantportionofthecollecteddataconsistsofACeventsthatareaprimarysourceofbackgroundnoise.Also,duringPETtransmissionscans,photonsthatoriginatefromdi erenttransmissionsourcescauseACevents.InPET,themeasurementsareusuallypre-correctedforACeventsbyreal-timesubtractionofthedelayedwindowcoincidences.Randomssubtractioncompensatesinmeanforaccidentalcoincidences,butdestroysthePoissonstatistics.Wedevelopstatisticalimagereconstructionmethodsforrandomspre-correctedPETmeasurementsusingpenalizedmaximumlikelihood(ML)estimation.Weintroducetwonewapproximationstothecomplicatedexactlog-likelihoodofthepre-correctedmeasurements:onebasedona\shiftedPoissonmodel,andtheotherbasedonsaddle-pointapproxima-tionstothemeasurementprobabilitymassfunction(pmf).Wecompareestimatorsbasedonthenewmodelstotheconventionaldata-weightedleastsquares(WLS)andconven-tionalmaximumlikelihood(basedontheordinaryPoisson(OP)model)usingexperiments,simulationsandanalyticapproximations.Fortransmissionscans,wedemonstratethattheproposedmethodsavoidthesystematicbiasoftheWLSmethod,andleadtosigni cantlylowervariancethantheconventionalOPmethod.Wealsoinvestigatethepropagationofnoisefromthereconstructedattenuationmapsintotheemissionimages.Interestingly,thenoiseimprovementsintheemissionimageswiththenewmethodsareevengreaterthantheimprovementsintheattenuationmapsthemselves.Tocorroboratetheempiricalstudies,wedevelopanalyticalapproximationstothereconstructedimagecovarianceandwealsodevelopanalyticalapproximationsforthepropagationofnoisefromattenuationmapsintothereconstructedemissionimages.Theresultsoftheanalyticapproximationsareshowntobeingoodagreementwiththeexperimentalresultssupportingtheimprovementswiththenewmethods.Similarly,fortheemissionreconstructions,wedemonstratethattheproposedmethodsleadtosigni cantlylowervariancethantheconventionalOPmethodandalsoavoidsys-tematicpositivebiasoftheOPmethod.AlthoughtheSPmodelisshowntobeslightlybiasedforemissionscanswithverylowcountrates,thesaddle-pointmodelisfreeofanysystematicbiasandperformsalmostidenticallytotheexactlog-likelihood.Also,weinves-tigatethebias-variancetrade-o softhemodelsin1-Dbyanalyzinghowclosetheyperformtothe\uniformCramer-Raobounds.Thenewmethodso erimprovedimagereconstructioninPETthroughmorerealisticstatisticalmodeling,yetwithnegligibleincreaseincomputationovertheconventionalOPmethod.cMehmetYavuz2000AllRightsReservedTomywifeSemaiiACKNOWLEDGEMENTSIwouldliketoexpressmydeepestgratitudetomyadvisorProfessorJe reyA.Fesslerforhisenlighteningandconstructiveguidancethroughoutmygraduatestudy.Hisunder-standing,encouragementandmoralsupporthelpedmeatallstagesofmygraduatework,andmademyPh.D.researchalivelylearningexperience.IwouldliketothankTUBITAKfortheir nancialsupportwithscholarshipforthe rstyearofmygraduatestudy.IwouldalsoliketothanktomyadvisorProfessorJe reyFessler,ProfessorLesRogersandNationalInstituteofHealthforsupportingme nanciallywithresearchassistantship.IwouldalsoliketoexpressmygratitudetoProfessorAlfredHero,ProfessorLesRogersandProfessorAndrewYagleforservinginmycommitteeandhelpingmewiththeirideas,NealClinthorneforhishelpfulsuggestions,WebStaymanforhishelpwiththemodi edquadraticpenaltyandmycolleaguesHakanErdogan,WebStayman,SteveTitusandmanyothersforsharingideasandfriendship.Finally,Iwishtothanktomyparents,mybrother,andmydearwifeSemafortheirlovingsupportandencouragement.iiiTABLEOFCONTENTSDEDICATION......................................iiACKNOWLEDGEMENTS..............................iiiLISTOFTABLES...................................viiLISTOFFIGURES..................................viiiLISTOFAPPENDICES...............................xiiiCHAPTERS1Introduction...................................11.1BackgroundandMotivation......................11.2OrganizationoftheThesis.......................41.3OriginalContributio

1 / 159
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功