3012200812武汉理工大学学报JOURNALOFWUHANUNIVERSITYOFTECHNOLOGYVol.30No.12Dec.2008詹昊1,李万平1,方秦汉2,李龙安2(1.,430074;2.,430050):应用计算流体力学软件Fluent对不种雷诺数下(亚临界区超临界区极超临界区)的圆柱绕流进行仿真计算采用大涡模型(Largeeddysimulation),不可压缩的NavierStokes方程,计算了三维圆柱绕流的气动力特性系统分析了涡脱落形态,阻力系数,Strouhal数随雷诺数的变化情况数值计算结果表明流动呈明显的三维特性,在105Re106时出现阻力危机现象,从亚临界区超临界区到极超临界区,涡脱落形态由规则到不规则再到规则:圆柱绕流;大涡模型;三维仿真计算:U448.215:A:16714431(2008)12012904NumericalSimulationoftheFlowAroundaCircularCylinderatVariesReynoldsNumberZHANHao1,LIWanping1,FANGQinhan2,LILongan2(1.SchoolofCivilEngineeringandMechanics,HuazhongUniversityofScienceandTechnology,Wuhan430074,China;2.ChinaZhongtieMajorBridgeReconnaissance&DesignInstituteCoLtd,Wuhan430050,China)Abstract:Flowoveracylinderisafundamentalfluidmechanicsproblemofpracticalimportance.ThispaperpresentsthecalculationsofcharacteristicsofarigidsinglecircularcyclinderintwoorthreedimensionalincompressibleuniformcrossflowbyusingLamberorLarge-eddysimulationmethodofFLUENT.Thenumericalsimulationfocusedoninvestigatingthecharacteristicsofthedragcoefficient,StrouhalnumberandthetypicalflowpatternswiththeReynoldsnumberfrom1to107.ItisfoundthatunderthehighReynoldsnumbertheflowaroundthecylinderobviouslyappearsthreedimensionalcharacteristics.ThereissuddendecreaseinCdfor105Re106,Thenumbericalresultsaregoodagreementwiththepreviousexperimentresults.Keywords:circularcylinder;largeeddysimulation;threedemensionalnumericalsimulation:20080721.:(10372033).:(1971),,.Email:poetryzhanhao@163.com,,,,,,,,,,,,11.1FLUENTFLUENT:(SpalartAllmaras)((Realizable)),,ReynoldsNavierStokes,,[1]t+uixi=0(1)t(ui)+xj(uiuj)=xj!uixj-pxi-∀ijxj(2),,uiuj,p,!(1)∀ij,1.21Reynolds,Reynolds1.510-5m2/s13102Re31053105Re3.5106Re!3.510611002101110231023.91032.01041.010531051.01063.51061.0107D/m0.0250.0250.0250.0250.0250.0250.0250.150.250.8752.5V/(m∀s-1)0.00060.0120.060.182.341260306060601,,2,41D21D(D),10D,30D,10D3,26D11D,5D,20D,5D3,,,34D,201.3Reynolds:Re=UD/#,U,#Strouhal:St=fsD/U,fs:Cd=Fd/0.5V2HD,Fd,H,,:∃=!u=uzy-uyzi+uxz-uzxj+uyx-uxyk,!=ix+jy+kz:223[2,3]232,[2,3],Strouhal;2St,St;,,Re=106(),Re=3105,,,130200812,2ReCdStRe=1[2,3]10-Fluent12-Re=20[2,3]2.3-Fluent2.4-Re=102[2,3]1.80.16Fluent1.50.173102Re3105Re=3102[2,3]1.40.2Fluent1.210.2Re=3.9103[2,3]1.20.21(Kravchenko)[4]0.99#0.050.215#0.005Fluent1.260.22Re=2104[2,3]1.20.2(Yokuda&Ramaprian1990)[5]1.20.21Fluent1.250.2Re=1105[2,3]1.250.19Fluent1.030.20Re=3105[2,3]0.90.2Fluent1.20.213105Re3.5106Re=106[2,3]0.38-(Zdravkovich,1997)[5]0.17∃0.400.18∃0.50Fluent0.60.22Re!3.5106Re=3.5106[2,3]0.550.25Fluent0.430.24()Re=107[2,3]0.50.29Fluent0.40.3(),4∃10:Re=1,Re=20Re=100Reynolds,,Re=106,,,,Re=107,,,1313012,:,11121112,3FluentReynolds,:a.(),b.,,1,[1].[M].:,2002.[2]H.[M].7..,.:,1988.[3]HermannSchliching.BoundarylayerTheory[M].NewYork:McgrawhillBookCompany,1979.[4]PietroCatalano.NumericalSimulationoftheFlowAroundaCircularCylinderatHighReynoldNumbers[J].InternationalJournalofHeatandFluidFlow,2003,24:463469.[5]FrankeJ,FrankW.LargeEddySimulationoftheFlowPastaCircularCylinderatRe=3900[J].JournalofWindEngineeringandIndustrialAerodynamics,2002,90:11911206.132200812