导数的乘除法法则

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

复习回顾两个函数和(差)的导数,等于这两个函数导数的和(差),即)()()()(xgxfxgxf)()()()(xgxfxgxf*求导的加减法法则:前面学习了导数的加法减法运算法则,下面来研究两个函数积、商的导数求法:引例:设在处的导数为,,求在处的导数。2)(xxg)()()(2xfxxgxfy)(xfy0x0x)(xf我们观察与、之间的联系,)(xg)(xf)()(xgxf从定义式中,能否变换出和??)(xg)(xf)()()(020020xfxxxfxxy对于的改变量,有0xxxxfxxxfxxxy)()()(020020平均变化率:如何得到、?)(xg)(xfxxxxxxgxxfxxfxxf202000)()()()()(即出现:解析xxfxxxxfxxfxx)()()()()(020200020xxfxxxfxxxy)()()(020020)()()()()(020200020xfxxxxxxfxxfxx)(2)(lim)()()(lim00202000000xgxxxxxxfxxfxxfxx20200)(limxxxx由于)()()()()(2)(000000020xfxgxfxgxfxxfx所以在处的导数值是:)()()(2xfxxgxf0x因此,的导数是:)(2xfx)()()(22xfxxfx)()()()()()(xgxfxgxfxgxf由此可以得到:特别地,若,则有kxg)()()(xfkxkf概括一般地,若两个函数和的导数分别是和,则:)(xg)(xf)(xg)(xf)()()()()()(xgxfxgxfxgxf)()()()()()()(xgxgxfxgxfxgxf2)()(xfkxkf)()()()(xgxfxgxf)()()()(xgxfxgxf思考:下列式子是否成立??试举例说明。××例如,,通过计算可知23)(,)(xxgxxf)()()()(xgxfxgxf)()()()(xgxfxgxf例1求下列函数的导数:xxyxxyexyxln)3(;sin)2(;)(21例2求下列函数的导数:xxyxxyln)2(;sin)1(2解析解析2cos)(;)sin(ln)(xxxyxxxy212例3求下列函数的导数:例4求曲线过点的切线方程。xxxxfxln211)()0,1(解析解析2cos2sin)3()2()2()13)(32()1(22xxxyxyxxy1.计算下列函数的导数:2.求曲线在处的切线方程。23)2(xxy)9,1(xy21xycos21194182xxy本题也可以用公式变形再用导数的加减法法则计算。1827xy27yk例311)3(11)2(cos1)1(2xxeeyxxyxxy1.计算下列函数的导数:2.求曲线在处的切线方程。xxysin3x2)(2143122xxxxxy2)(21xxeey6332yk18)6332(2xy2)cos1(sincos1xxxxy小结)()()()()()(xgxfxgxfxgxf)()()()()()()(xgxgxfxgxfxgxf2)()(xfkxkf*导数的乘除法法则:结束(1)设,可知xexgxxf)(,)(2xexgxxf)(,2)(xxxxexxexxeex)2(2)(222)()()()()()(xgxfxgxfxgxf由导数的乘法法则:可得:解:xxxxxxxxxxcos2sin)(sinsin)()sin((3)由导数的乘法法则可得:可得:(2)由导数的乘法法则)()()()()()(xgxfxgxfxgxf1ln1ln1)(lnln)()ln(xxxxxxxxxx例2(1)设,则可知xxgxxf)(,sin)(1)(,cos)(xgxxf由导数的除法运算法则)()()()()()()(xgxgxfxgxfxgxf2可得22sincos1sincossinxxxxxxxxxx解:xxxxxxxxxx222ln)1ln2()(ln1ln2ln2(2)由导数的除法运算法则可得:练习无论题目中所给的式子多么复杂,但是求导的实质不会改变,求函数积(商)的导数时,都满足运算法则:)()()()()()(xgxfxgxfxgxf)()()()()()()(xgxgxfxgxfxgxf2分析:解:(1)可设xxxgxxfsinln)(,)(2xxxxxxxxxxxxxxxxcossin2ln2)cos1()sin(ln2)sin(ln222则有:xxxgxxfcos1)(,2)(根据导数的乘法法则,得:本题也可以展开括号再用导数的加减和乘法法则计算。(2)由导数的除法法则,可得:34222222cos2sin2cos2)1sin()(2)(cos)(coscosxxxxxxxxxxxxxxxxxxxxx例4要求切线方程,先求斜率,即导数。由求导运算法则可知:xxxxxxxxxxxxfxxxx2ln2ln2)1(12ln)2ln2()1(21)1()1(21)(22解:分析:可求得,47)1(f)1(47xy则曲线过点的切线方程为:xxxxfxln211)()0,1(即:0747yx练习

1 / 22
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功