11设计任务本文采用超声波传感器,IAP15单片机以及LCD显示模块设计了一种超声波测距显示器,可以实现测量物体到仪器距离以及显示等功能。是一种结构简单、性能稳定、使用方便、价格低廉的超声波距离测量器,具有一定的实用价值。2设计思路2.1超声波测距2.1.1超声波超声波是指频率在20kHz以上的声波,它属于机械波的范畴。近年来,随着电子测量技术的发展,运用超声波作出精确测量已成可能。随着经济发展,电子测量技术应用越来越广泛,而超声波测量精确高,成本低,性能稳定则备受青睐。超声波也遵循一般机械波在弹性介质中的传播规律,如在介质的分界面处发生反射和折射现象,在进入介质后被介质吸收而发生衰减等。正是因为具有这些性质,使得超声波可以用于距离的测量中。随着科技水平的不断提高,超声波测距技术被广泛应用于人们日常工作和生活之中。一般的超声波测距仪可用于固定物位或液位的测量,适用于建筑物内部、液位高度的测量等。超声在空气中测距在特殊环境下有较广泛的应用。利用超声波检测往往比较迅速、方便、计算简单、易于实现实时控制,并且在测量精度方面能达到工业实用的指标要求,因此为了使移动机器人能够自动躲避障碍物行走,就必须装备测距系统,以使其及时获取距障碍物的位置信息(距离和方向)。因此超声波测距在移动机器人的研究上得到了广泛的应用。同时由于超声波测距系统具有以上的这些优点,因此在汽车倒车雷达的研制方面也得到了广泛的应用。2.1.2超声波测距原理最常用的超声测距的方法是回声探测法,超声波发射器向某一方向发射超声波,在发射时刻的同时计数器开始计时,超声波在空气中传播,途中碰到障碍物面阻挡就立即反射回来,超声波接收器收到反射回的超声波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物面的距离s,即:s=340t/2。由于超声波也是一种声波,其声速V与温度有关。在使用时,如果传播介质温度变化不大,则可近似认为超声波速度在传播的过程中是基本不变的。如果对测距精度要求很高,则应2通过温度补偿的方法对测量结果加以数值校正。声速确定后,只要测得超声波往返的时间,即可求得距离。距离计算公式:d=S2=𝐶×𝑇2(2-1)其中d为被测物与测距器的距离,s为声波的来回路程,c为声波,t为声波来回所用的时间。其中声速c与温度有关。C=331.5+0.607T(2-2)如果要提高测距精确度,则必须考虑温度的影响,也可取室温简化电路设计,将温度传感器作为扩展电路,在力所能及的情况下完成。2.1.3超声波测距模块HC-SR04HC-SR04超声波测距模块可提供2cm至400cm的非接触式距离感测功能,测距精度可达3mm;模块自身包括超声波发射器、接收器与控制电路。实物如图2-1所示:图2-1HC-SR04模块实物图HC-SR04工作原理及说明:1、给Trig触发控制信号IO端口至少10us的高电平信号。2、模块自动发送8个40khz的方波,并自动检测是否有信号返回。3、有信号返回时,Echo回响信号输出端口输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。4、两次测距时间间隔最少在60ms以上,以防止发射信号对回响信号的影响。如图2-2所示:3图2-2HC-SR04工作原理2.2LCD1602显示屏LCD1602显示屏实物如图2-3所示:图2-3LCD1602显示屏4LCD1602电路原理图如图2-4所示:图2-4LCD1602电路原理图2.3IAP单片机IAP15F2K61S2单片机为增强型8051CPU,具有1个单时钟/机器周期,其工作电压为4.2V~5.5V,速度比普通的8051快8~12倍;61K字节片内FLASH程序存储器,片内大容量2048字节的SRAM,大容量的片内EEPPOM,擦写次数在10万次以上;一共有8道10位高速ADC,速度高达30万次/s,3路PWM还可当3路DA使用;共有3通道比较单元,内部高可靠复位,8级可选复位门槛电压,彻底省掉外部复位电路;内部高精度RC时钟,内部时钟从5MHz~35MHz可选,相当于普通8051的60MHz~420MHz;两组高速异步串行通信端口,可以在5组管脚之间进行切换,分时复用可当5组串口使用;各种接口扩展齐全,一根USB线实现系统供电、程序下载及通信功能。单片机实物图及引脚图如图2-5、图2-6所示:5图2-5IAP单片机实物图图2-6IAP单片机引脚图62.4单片机最小系统对于一个单片机系统,能够工作的前提是具有最小系统模块,最小系统一般包括单片机、晶振电路、复位电路。单片机的复位及晶振电路都是常见的接法,电源用一个按键控制接通与断开,使得程序下载变得方便。电路如图2-7所示:图2-7单片机最小系统2.4.2电源电路此最小系统中的电源供电模块的电源可以通过计算机的USB口供给,也可使用外部稳定的5V电源供电模块供给。2.4.1时钟电路单片机晶振的作用是为系统提供基本的时钟信号。内部时钟电路的晶振频率一般选择在4MHZ~12MHZ之间(本设计选用12MHZ),外接两个谐振电容,该电容的典型值为30pF。如图2-8所示:7图2-8时钟电路2.4.3复位电路按键复位就是在复位电容上并联一个开关,当开关按下时电容被放电、RST也被拉到高电平,而且由于电容的充电,会保持一段时间的高电平来使单片机复位。如图2-9:图2-9复位电路2.4系统整体设计系统主要由三部分组成:单片机,超声波测距模块和LCD1602显示屏构成。单片机在控制中作为控制器,用于对超声波模块的控制和计时,显示电路主要实时显示测量数值。系统框图如图2-10所示:图2-10系统框图超声波接收单片机控制器超声波发送LCD显示83原理图根据前面对设计的各个相关模块的分别讲述,再结合单片机的引脚功能,从而得到系统整体电路图,如图3-1所示:图3-1原理图在图3-1中,LCD1602的D0到D7连接10K上拉排阻并外接到单片机的P2.0到P2.7端口,用于显示所测量距离,超声波HC-SR04的trig端、echo端分别接在单片机的P0.0、P3.2这两个端口,利用单片机的计时器将时间计算出来。最后通过程序设计将计算出的距离显示到LCD1602液晶显示屏上。94PCB图生成PCB如图4-1、4-2所示:图4-1PCB原理图图4-2PCB图105程序流程图5.1主程序设计这次软件设计使用的软件是KeiluVision4。Keil4集成开发环境是一个窗口化的软件开发平台,它集成了功能强大的编辑器、工程管理器以及各种编译工具Keil4使用简单、功能强大,是设计者完成设计任务的重要保证,还能加速单片机应用程序的开发过程。主程序首先是对系统环境初始化,设定定时器T0工作模式为6位定时计数器模式,置位总中断允许位EA并给显示端口P2清0。然后调用超声波发生子程序送出一个超声波脉冲,为了避免超声波从发射器直接传送到接收器引起的直射波触发,需要延时约0.1ms(这也就是超声波测距器会有一个最小测距离的原因)后,才打开外中断0接收返回的超声波信号。由于采用的是12MHz的晶振,计算器每计一个数就是1us,,当主程序检测到接收成功的标志位后,将计数器T0中的数(即超声波来回所用的时间)按计算公式计算,即可得被测物体与测距器之间的距离,设计时取声速为340m/s。超声波测距程序见附录。5.2程序流程图主程序流程图如图5-1所示:图5-1主程序流程图开始系统初始化显示结果0.5s发射超声波脉冲计算距离等待反射超声波11测距程序流程图如图5-2所示:图5-2测距程序流程图126设计感想在本次实训中,我们首先第一周进行了FPGA的学习,由老师带领我们学习FPGA的基本操作以及简单电路的设计,其中我认为最为主要的就是让我们认识到了FPGA的发展现状以及发展前景。通过了解,我们知道了FPGA的方便,可以用语言来实现我们需要的功能,进而自动实现其电路的设计,帮助我们简化了很多步骤,在这一周的学习当中,我们首先学会了如何用语言来实现流水灯的设计,以及其基本的设计思路和方法还有quartus2软件的使用方法,继而学会了如何捕捉上升沿,这个很重要,对于以后我们工作能够起很大的作用,最主要的是我们学到了很多电路设计方面的经验,这些是我们平常在书本上学不到的,能够帮助我们在以后的工作当中节省很多的时间,创造了很多捷径,能够提高我们的效率。在第二周的时间里,我设计了超声波测距电路,首先当我拿到这个题目时,对于这个课题只有一些初步的想法,通过理论课的学习对此有一个初始的印象,然后就是去找资料,了解到了我们要设计的这个电路具体的实现原理、所需模块等方面,以及他的组成部分,基于这个单片机,我们首先就要设计它的最小系统,然后我们还需要超声波传感器。并且还需要对于测完的距离进行显示,这时就需要显示装置,这里我们用的是LCD1602A显示屏。拿到这些装置以后,我并不会连接,所以就需要认识每个器件的引脚功能,工作原理,引脚的定义以及接法等等,然后我们就要进行绘制原理图,然后生成PCB板,在确认无误之后才能进行焊接,在焊接过程当中我们要注意的是焊点是否焊严,焊锡不能过多,走线要符合布局,在开始这次的设计工程当中,没有安排好布局,把LCD1602的数据口和单片机引脚接反,这是一个失误的地方,在老师指导下纠正过来。我在焊接完板子之后,要进行测试,首先测试显示装置,由于没有电位器,我们就要计算电阻,使显示器能够正常工作,有适当的对比度,亮度等等,在我们进行测试的时候,换了好几个电阻才调整到了适当的亮度。在各模块都工作正常后,我们要进行程序的编写,要考虑很多方面,例如接口,语法,逻辑等有没有错误,这些是很必要的,然后进行调试,更改程序等等。本次设计的超声波测距电路经过测试,误差在1CM左右是0-2CM里可以接受的范围。经过本次实训,使我收获良多,首先我们认识到了FPGA的发展现状,然后我们了解了电路设计制作的基本流程,让我对这方面的工作有了一定的认识,帮助我们规划以后的工作,这些是我们本次实训的最大收获。而且,在设计超声波测距电路过程中我查阅了很多的资料,自主的学习了很多以前没有注意但是实际需要的东西,帮助我们完善了知识储13备,也在一定程度上增强了了我们实际的工作能力,这些是我们在课堂学习当中没办法实践的方面,然而在以后我们走上工作岗位上这些却是很重要的东西,所以很感谢这次生产实习让我学到了这么多的东西,做出了实物也使我很有成就感,对这方面的内容有了更大的兴趣以及了解,能够在我走上工作岗位之前给自己提个醒,未雨绸缪,提早做好工作之前的准备。参考文献[1]张岩,张鑫.单片机原理及应用.机械工业出版社,2015.6.[2]范立南.单片机原理及应用教程.北京大学出版社,2013.[3]楼然苗,李光飞.单片机课程设计指导.北京航空航天大学出版社,2012.[4]俞国亮.MCS-51单片机原理及应用.清华大学出版社,2008.[5]瞿金辉,周蓉生.超声波测距系统的设计.中国仪器仪表,2007.8.[6]谭浩强.C语言程序设计(第四版).清华大学出版社,2011.11[7]周凯,赵望达,赵迪.高精度超声波测距系统.测试技术卷,200714附录A器件清单:器件清单如表A-1所示:元件说明数量IAP15F2K61S2单片机1HC-SR04超声波模块1LCD1602液晶显示屏1CH340GUSB转TTL下载器1按键开关四脚1自锁开关六脚1瓷片电容30pF2电解电容10uF1滑动变阻器10310KΩ1排阻A102J10KΩ上拉电阻1电阻10KΩ1电阻300Ω1晶振12MHz1导线若干表A-1器件清单15附录B程序代码:#includestc15f2k60s2.h#includeintrins.h#defineuintunsignedint#defineucharunsignedcharuints,time,a,b,c,d;sbitRS=P3^6;sbitRW=P3^5;sbitEN=P3^7;sbitTrig=P0^1;sbitEcoh=P0^0;ucharcodedis_