.),0()1ln(][32上单调递增在区间:证明函数引例xxxxf32)1ln(0][xxxx时,:证明:当变式.11)11ln(,]1[3207(都成立不等式求证:对任意正整数:例山东改编)nnnn.120,12ln][210axxexax时,求证:已知:变式安徽改编)(0,122xaxxexfx证明:设axexfx22'则2','xexgxfxg则设.),2(ln2ln0.0'2ln;0',2ln0上单调递增上单调递减,在,在即时,当时当xgxgxxgx)2ln1(222ln22ln2lnminaaegxg所以上单调递增在),0(0'012lnminxfxfxgxga.120002axxefxfxx,即时符号无法判断!二次求导)]1(......432ln[2121111]2[*II10(nnnnNnxxexx时,;时,求证::例改编)全国1,111,11)1(xeexexxxxx即即原不等式证明:1'),1(,1xxexfxxexf则设.),0()0,1(.0)('),0(;0)(')0,1(上单调递增上单调递减,在在即时时当xfxfxxfx.1000min所以原不等式成立,即xexffxfx)]1(......432ln[2121111]2[*II10(nnnnNnxxexx时,;时,求证::例改编)全国1ln1ln101)2(*nnNnxxxexx时,当,所以时知,由证明:)]1(......432ln[2)1()1ln(......4ln3ln2ln......321nnnnnn即21lnln),,0(:]3[2012(xxxxx求证:已知例济南模拟改编)xxxxfxxxxf111'0,ln则证明:设0'1;0'10xfxxfx时当时当1,1111)1,0(minxfxffxfxf所以,即上单调递增,,上单调递减,在在所以.12121211.,0'),(,0'),0(ln1'0,21lnmax2即原不等式成立所以所以单调递减时当单调递增;时当则设xgxfeegxgxgxgexxgxgexxxxgxxxxg课堂小结:构造函数的技巧•1.由待证不等式直接构造或移项构造,•2.待证不等式等价变形后再构造,•3.不等式两边分别构造一个函数.